PHYS 1443 – Section 002 Lecture #2

Wednesday, Aug. 29, 2007 Dr. Jaehoon Yu

- Brief history of physics
- Standards and units
- Uncertainties
- Dimensional Analysis
- Fundamentals
- One Dimensional Motion: Average Velocity;
 Acceleration; Motion under constant acceleration;
 Free Fall

Announcements

- Reading assignment #1: Read and follow through all sections in appendices A and B by Monday, Sept. 3
 - There will be a quiz on Wednesday, Sept. 5, on this reading assignment
- E-mail list: 15 of you subscribed to the list so far
 - Had a minor issue with the list but is resolved now
 - 5 point extra credit if done by Friday, Aug. 31
 - 3 point extra credit if done by Wednesday, Sept. 5
- 39 of you have registered for homework roster, of whom 18 submitted homework #1
 - Remember that you need to download and submit homework #1 for full credit!!
 - You need a UT e-ID and password to log-in and download homework
 - If you don't have them request e-id on the web http://www.utexas.edu/eid
- No class next Monday, Sept. 3, Labor day
 - Remember the homework #1 due at 7pm, though...

Why do Physics?

Exp. To understand nature through experimental observations and measurements (Research)

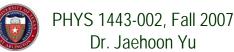
Theory Establish limited number of fundamental laws, usually with mathematical expressions

Predict the nature's course

∬ Theory and Experiment work hand-in-hand

∬ Theory works generally under restricted conditions

∬ Discrepancies between experimental measurements and theory are good for improvements


∬ Improves our everyday lives, though some laws can take a while till we see them amongst us

Models, Theories and Laws

- Models: An analogy or a mental image of a phenomena in terms of something we are familiar with
 - Often provide insights for new experiments and ideas
- Theories: More systematically improved version of models
 - Can provide quantitative predictions that are testable and more precise
- Laws: Certain concise but general statements about how nature behaves → The statement must be found experimentally valid
- Principles: Less general statements of how nature behaves
 - Has some level of arbitrariness

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time and energy (mechanics)
 - Discovery of radioactivity
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Needs for Standards and Units

- Three basic quantities for physical measurements
 - Length, Mass and Time
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called **SI** (*System Internationale*) was established in 1960
 - Length in meters (m)
 - Mass in kilo-grams (kg)
 - <u>Time</u> in seconds (s)

Definition of Base Units

SI Units	Definitions	
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during a time interval of 1/299,792,458 of a second.	
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium alloy kept in International Bureau of Weights and Measure in France.	
1 s (Time)	One second is the <u>duration of 9,192,631,770</u> <u>periods of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.	

- There are prefixes that scales the units larger or smaller for convenience (see pg. 7)
- Units for other quantities, such as Kelvins for temperature, for easiness of use

Prefixes, expressions and their meanings

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸
- zetta (Z): 10²¹
- yotta (Y): 10²⁴

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (μ): 10-6
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸
- zepto (z): 10-21
- yocto (y): 10-24

International Standard Institutes

- International Bureau of Weights and Measure http://www.bipm.fr/
 - Base unit definitions:http://www.bipm.fr/enus/3_SI/base_units.html
 - Unit Conversions: http://www.bipm.fr/enus/3_SI/
- US National Institute of Standards and Technology (NIST) http://www.nist.gov/

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	М
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Examples for Unit Conversions

• Ex: A silicon chip has an area of 1.25in². Express this in cm².

What do we need to know?

1.25 in² = 1.25 in² ×
$$\left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^2$$

= 1.25 in² × $\left(\frac{6.45 \text{ cm}^2}{1 \text{ in}^2}\right)^2$
= 1.25 × 6.45 cm² = 8.06 cm²

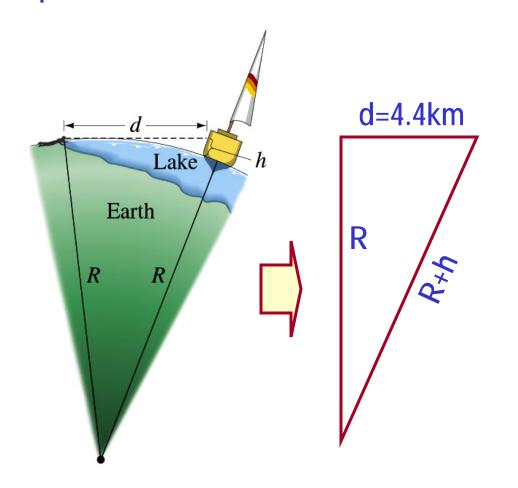
• Ex 1.4: Where the posted speed limit is 65 miles per hour (mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) kilometers per hour (km/h)?

1 mi=
$$(5280 \text{ ft}) \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 1609 \text{ m} = 1.609 \text{ km}$$

(a) 65 mi/h =
$$\left(65 \text{ mi}\right) \left(\frac{1609 \text{ m}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 29.1 \text{ m/s}$$

(b) 65 mi/h =
$$(65 \text{ mi}) \left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) = 104 \text{ km/h}$$

Wednesday, Aug. 29, 2007



Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: 10³=1,000
 - Round up for Order of magnitude estimate; 8x10⁷ ~ 10⁸
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Example for estimates (ex1.8)

Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

Pythagorian theorem

$$(R+h)^2 \approx d^2 + R^2$$

 $R^2 + 2hR + h^2 \approx d^2 + R^2$
Solving for R

$$R \approx \frac{d^{2} - h^{2}}{2h}$$

$$= \frac{(4400m)^{2} - (1.5m)^{2}}{2 \times 1.5m}$$

$$= 6500km$$

Uncertainties

 Physical measurements have limited precision, however good they are, due to:

Stat.{ - Number of measurements

Quality of instruments (meter stick vs micro-meter)
 Experience of the person doing measurements
 Etc

 In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values

Significant Figures

- Significant figures denote the precision of the measured value
 - Significant figures: non-zero numbers or zeros that are not place-holders
 - How many significant figures? 34, 34.2, 0.001, 34.001
 - 34 has two significant digits
 - 34.2 has 3
 - 0.001 has one because the 0's before 1 are place holders
 - 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - When there are many 0's, use scientific notation:
 - $-31400000=3.14x10^7$
 - $-0.00012=1.2x10^{-4}$

Significant Figures

- Operational rules:
 - Addition or subtraction: Keep the <u>smallest number of</u> <u>decimal place</u> in the result, independent of the number of significant digits: 12.001+ 3.1= 15.1
 - Multiplication or Division: Keep the <u>smallest</u> significant figures in the result: 12.001 x 3.1 = 37 , because the smallest significant figures is ?.

Dimension and Dimensional Analysis

- An extremely useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - Length (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are used as algebraic quantities: Can perform two algebraic operations; multiplication or division

Dimension and Dimensional Analysis

- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [L]/[T] = [L][T^{-1}]$
 - Distance (L) traveled by a car running at the speed V in time T
 - $\bullet \mathcal{L} = \mathcal{V}^* \mathcal{T} = [\mathcal{L}/\mathcal{T}]^* [\mathcal{T}] = [\mathcal{L}]$
- More general expression of dimensional analysis is using exponents: eg. $[v]=[\mathcal{L}^nT^m]=[\mathcal{L}]\{T^1]$ where n=1 and m=-1

Examples

- Show that the expression [v] = [at] is dimensionally correct
 - Speed: [v] =L/T
 - Acceleration: [a] =L/T²
 - Thus, $[at] = (L/T^2)xT = LT^{-1} = L/T = [v]$
- •Suppose the acceleration a of a circularly moving particle with speed v and radius r is proportional to r^n and v^m . What are n and m?

$$L^{1}T^{-2} = \left(L\right)^{n} \left(\frac{L}{T}\right)^{m} = L^{n+m}T^{-m}$$

$$-m = -2 \implies m = 2$$

$$n+m=n+2\equiv 1 \implies n=-1$$