PHYS 1443 – Section 002
Lecture #15

Monday, Oct. 29, 2007
Dr. Jae Yu

• Conservation of Momentum
• Impulse and Momentum Change
• Collisions
• Center of Mass

Today’s homework is HW #10, due 9pm, Monday, Nov. 5!!
Announcements

- There have been large number of “Phantom submissions” in HW#8
 - Please send me the problem list that has such cases.
 - If you answered correctly, I will give you the full credit for the problem.
- Exam grading is not complete yet. Hope to get it done shortly.
- This Wednesday’s colloquium is the one I told you about
 - Professor Eun-Suk Seo from U. of Maryland
 - Won a US president’s award as an exceptionally talented principal investigator
 - The extra credit points will be doubled for this colloquium.
 - Please take a full advantage of this opportunity!!
Linear Momentum

The principle of energy conservation can be used to solve problems that are harder to solve just using Newton’s laws. It is used to describe motion of an object or a system of objects.

A new concept of linear momentum can also be used to solve physical problems, especially the problems involving collisions of objects.

Linear momentum of an object whose mass is m and is moving at a velocity of v is defined as

$$\vec{p} \equiv m \vec{v}$$

What can you tell from this definition about momentum?

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s

What else can you see from the definition? Do you see force?

The change of momentum in a given time interval

$$\frac{\Delta \vec{p}}{\Delta t} = m \frac{\vec{v} - \vec{v}_0}{\Delta t} = m \left(\frac{\vec{v} - \vec{v}_0}{\Delta t} \right) = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a} = \sum \vec{F}$$
Linear Momentum and Forces

\[\sum \vec{F} = \frac{d \vec{p}}{dt} \]

What can we learn from this Force-momentum relationship?

- The rate of the change of particle’s momentum is the same as the net force exerted on it.
- When net force is 0, the particle’s linear momentum is constant as a function of time.
- If a particle is isolated, the particle experiences no net force. Therefore its momentum does not change and is conserved.

Something else we can do with this relationship. What do you think it is?

The relationship can be used to study the case where the mass changes as a function of time.

\[\sum \vec{F} = \frac{d \vec{p}}{dt} = \frac{d(m \vec{v})}{dt} = \frac{dm}{dt} \vec{v} + m \frac{d \vec{v}}{dt} \]

Can you think of a few cases like this?

Motion of a meteorite

Motion of a rocket
Conservation of Linear Momentum in a Two Particle System

Consider an isolated system with two particles that do not have any external forces exerting on it. What is the impact of Newton’s 3rd Law?

If particle #1 exerts force on particle #2, there must be another force that the particle #2 exerts on #1 as the reaction force. Both the forces are internal forces, and the net force in the entire SYSTEM is still 0.

Now how would the momenta of these particles look like?

Let say that the particle #1 has momentum \(\mathbf{p}_1 \) and #2 has \(\mathbf{p}_2 \) at some point of time.

Using momentum-force relationship

\[
\begin{align*}
\vec{F}_{21} &= \frac{d\mathbf{p}_1}{dt} \\
\vec{F}_{12} &= \frac{d\mathbf{p}_2}{dt}
\end{align*}
\]

And since net force of this system is 0

\[
\sum \vec{F} = \vec{F}_{12} + \vec{F}_{21} = \frac{d\mathbf{p}_2}{dt} + \frac{d\mathbf{p}_1}{dt} = \frac{d}{dt} (\mathbf{p}_2 + \mathbf{p}_1) = 0
\]

Therefore \(\mathbf{p}_2 + \mathbf{p}_1 = \text{const} \)

The total linear momentum of the system is conserved!!!
Linear Momentum Conservation

\[
\vec{p}_{1i} + \vec{p}_{2i} = m_1 \vec{v}_1 + m_2 \vec{v}_2
\]

\[
\vec{p}_{1f} + \vec{p}_{2f} = m_1 \vec{v}'_1 + m_2 \vec{v}'_2
\]

\[
\vec{p}_{1i} + \vec{p}_{2i} = \vec{p}_{1f} + \vec{p}_{2f}
\]
More on Conservation of Linear Momentum in a Two Body System

From the previous slide we’ve learned that the total momentum of the system is conserved if no external forces are exerted on the system.

\[\sum \vec{p} = \vec{p}_2 + \vec{p}_1 = const \]

What does this mean? As in the case of energy conservation, this means that the total vector sum of all momenta in the system is the same before and after any interactions.

Mathematically this statement can be written as:

\[
\begin{align*}
\sum P_{xi} &= \sum P_{xf} \\
\sum P_{yi} &= \sum P_{yf} \\
\sum P_{zi} &= \sum P_{zf}
\end{align*}
\]

Whenever two or more particles in an isolated system interact, the total momentum of the system remains constant.
Example for Linear Momentum Conservation

Estimate an astronaut’s (M=70kg) resulting velocity after he throws his book (m=1kg) to a direction in the space to move to another direction.

From momentum conservation, we can write

$$\vec{p}_i = 0 = \vec{p}_f = m_A \vec{v}_A + m_B \vec{v}_B$$

Assuming the astronaut’s mass is 70kg, and the book’s mass is 1kg and using linear momentum conservation

$$\vec{v}_A = - \frac{m_B}{m_A} \vec{v}_B = - \frac{1}{70} \vec{v}_B$$

Now if the book gained a velocity of 20 m/s in +x-direction, the Astronaut’s velocity is

$$\vec{v}_A = - \frac{1}{70} \left(20 \vec{i}\right) = -0.3 \vec{i} \ (m / s)$$
Impulse and Linear Momentum

Net force causes change of momentum ➔ Newton’s second law

By integrating the above equation in a time interval \(t_i \) to \(t_f \), one can obtain impulse \(I \).

\[
\int_{t_i}^{t_f} dp = \vec{p}_f - \vec{p}_i = \Delta \vec{p} = \int_{t_i}^{t_f} \vec{F} dt = \vec{I}
\]

Effect of the force \(\vec{F} \) acting on an object over the time interval \(\Delta t = t_f - t_i \) is equal to the change of the momentum of the object caused by that force. Impulse is the degree of which an external force changes an object’s momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.

What are the dimension and unit of Impulse?
What is the direction of an impulse vector?
Defining a time-averaged force
Impulse can be rewritten
If force is constant

\[
\bar{\vec{F}} = \frac{1}{\Delta t} \sum_i \vec{F}_i \Delta t
\]

\[
\bar{\vec{I}} = \bar{\vec{F}} \Delta t
\]

\[
\bar{\vec{I}} = \bar{\vec{F}} \Delta t
\]

It is generally assumed that the impulse force acts on a short time but much greater than any other forces present.
Example for Impulse

(a) Calculate the impulse experienced when a 70 kg person lands on firm ground after jumping from a height of 3.0 m. Then estimate the average force exerted on the person’s feet by the ground, if the landing is (b) stiff-legged and (c) with bent legs. In the former case, assume the body moves 1.0cm during the impact, and in the second case, when the legs are bent, about 50 cm.

We don’t know the force. How do we do this?

Obtain velocity of the person before striking the ground.

\[KE = -\Delta PE \]

\[\frac{1}{2}mv^2 = -mg(y - y_i) = mgy_i \]

Solving the above for velocity \(v \), we obtain

\[v = \sqrt{2gy_i} = \sqrt{2 \cdot 9.8 \cdot 3} = 7.7 \text{ m/s} \]

Then as the person strikes the ground, the momentum becomes 0 quickly giving the impulse

\[\vec{I} = \vec{F}\Delta t = \Delta \vec{p} = \vec{p}_f - \vec{p}_i = 0 - mv = \]

\[= -70 \text{ kg} \cdot 7.7 \text{ m/s} \cdot \hat{j} = -540 \hat{j} \text{ N} \cdot \text{s} \]
Example cont'd

In coming to rest, the body decelerates from 7.7 m/s to 0 m/s in a distance \(d = 1.0 \text{ cm} = 0.01 \text{ m} \).

The average speed during this period is
\[
\bar{v} = \frac{0 + v_i}{2} = \frac{7.7}{2} = 3.8 \text{ m/s}
\]

The time period the collision lasts is
\[
\Delta t = \frac{d}{\bar{v}} = \frac{0.01 \text{ m}}{3.8 \text{ m/s}} = 2.6 \times 10^{-3} \text{ s}
\]

Since the magnitude of impulse is
\[
|I| = |F\Delta t| = 540 \text{ N} \cdot \text{s}
\]

The average force on the feet during this landing is
\[
\bar{F} = \frac{I}{\Delta t} = \frac{540}{2.6 \times 10^{-3}} = 2.1 \times 10^5 \text{ N}
\]

How large is this average force? \(\text{Weight} = 70 \text{ kg} \cdot 9.8 \text{ m/s}^2 = 6.9 \times 10^2 \text{ N} \)
\[
\bar{F} = 2.1 \times 10^5 \text{ N} = 304 \times 6.9 \times 10^2 \text{ N} = 304 \times \text{Weight}
\]

If landed in stiff legged, the feet must sustain 300 times the body weight. The person will likely break his leg.

For bent legged landing:
\[
\Delta t = \frac{d}{\bar{v}} = \frac{0.50 \text{ m}}{3.8 \text{ m/s}} = 0.13 \text{ s}
\]
\[
\bar{F} = \frac{540}{0.13} = 4.1 \times 10^3 \text{ N} = 5.9 \text{Weight}
\]
Another Example for Impulse

In a crash test, an automobile of mass 1500kg collides with a wall. The initial and final velocities of the automobile are \(v_i = -15.0\, \text{i m/s} \) and \(v_f = 2.60\, \text{i m/s} \). If the collision lasts for 0.150 seconds, what would be the impulse caused by the collision and the average force exerted on the automobile?

Let's assume that the force involved in the collision is a lot larger than any other forces in the system during the collision. From the problem, the initial and final momentum of the automobile before and after the collision is

\[
\vec{p}_i = m\vec{v}_i = 1500 \times (-15.0\, \text{i}) = -22500\, \text{i kg m/s}
\]

\[
\vec{p}_f = m\vec{v}_f = 1500 \times (2.60\, \text{i}) = 3900\, \text{i kg m/s}
\]

Therefore the impulse on the automobile due to the collision is

\[
\vec{I} = \Delta \vec{p} = \vec{p}_f - \vec{p}_i = (3900 + 22500)\, \text{i kg m/s} = 26400\, \text{i kg m/s} = 2.64 \times 10^4\, \text{i kg m/s}
\]

The average force exerted on the automobile during the collision is

\[
\bar{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{2.64 \times 10^4\, \text{i}}{0.150} = 1.76 \times 10^5\, \text{i N}
\]
Collisions

Generalized collisions must cover not only the physical contact but also the collisions without physical contact such as that of electromagnetic ones in a microscopic scale.

Consider a case of a collision between a proton on a helium ion.

The collisions of these ions never involve physical contact because the electromagnetic repulsive force between these two become great as they get closer causing a collision.

Assuming no external forces, the force exerted on particle 1 by particle 2, F_{21}, changes the momentum of particle 1 by

$$d\vec{p}_1 = F_{21} \, dt$$

Likewise for particle 2 by particle 1

$$d\vec{p}_2 = F_{12} \, dt$$

Using Newton's 3rd law we obtain

$$d\vec{p}_2 = F_{12} \, dt = -F_{21} \, dt = -d\vec{p}_1$$

So the momentum change of the system in the collision is 0, and the momentum is conserved

$$d\vec{p} = d\vec{p}_1 + d\vec{p}_2 = 0$$

$$\vec{p}_{system} = \vec{p}_1 + \vec{p}_2 = \text{constant}$$
Elastic and Inelastic Collisions

Momentum is conserved in any collisions as long as external forces are negligible.

Collisions are classified as elastic or inelastic based on whether the kinetic energy is conserved, meaning whether it is the same before and after the collision.

Elastic Collision

A collision in which the total kinetic energy and momentum are the same before and after the collision.

Inelastic Collision

A collision in which the total kinetic energy is not the same before and after the collision, but momentum is.

Two types of inelastic collisions: Perfectly inelastic and inelastic.

Perfectly Inelastic: Two objects stick together after the collision, moving together at a certain velocity.

Inelastic: Colliding objects do not stick together after the collision but some kinetic energy is lost.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.
Elastic and Perfectly Inelastic Collisions

In perfectly Inelastic collisions, the objects stick together after the collision, moving together. Momentum is conserved in this collision, so the final velocity of the stuck system is

\[\vec{v}_f = \frac{m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i}}{(m_1 + m_2)} \]

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = (m_1 + m_2) \vec{v}_f \]

How about elastic collisions?

In elastic collisions, both the momentum and the kinetic energy are conserved. Therefore, the final speeds in an elastic collision can be obtained in terms of initial speeds as

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

\[\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2 \]

\[m_1 \left(v_{1i}^2 - v_{1f}^2 \right) = m_2 \left(v_{2i}^2 - v_{2f}^2 \right) \]

\[m_1 (v_{1i} - v_{1f})(v_{1i} + v_{1f}) = m_2 (v_{2i} - v_{2f})(v_{2i} + v_{2f}) \]

\[m_1 (v_{1i} - v_{1f}) = m_2 (v_{2i} - v_{2f}) \]

From momentum conservation above:

\[v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2} \right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2} \right) v_{2i} \]

\[v_{2f} = \left(\frac{2m_1}{m_1 + m_2} \right) v_{1i} + \left(\frac{m_1 - m_2}{m_1 + m_2} \right) v_{2i} \]

What happens when the two masses are the same?
Example for Collisions

A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and the two become entangled. If the lighter car was moving at 20.0m/s before the collision what is the velocity of the entangled cars after the collision?

The momenta before and after the collision are
\[\vec{p}_i = m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = 0 + m_2 \vec{v}_{2i} \]
\[\vec{p}_f = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} = (m_1 + m_2) \vec{v}_f \]

Since momentum of the system must be conserved
\[\vec{p}_i = \vec{p}_f \]
\[(m_1 + m_2) \vec{v}_f = m_2 \vec{v}_{2i} \]
\[\vec{v}_f = \frac{m_2 \vec{v}_{2i}}{(m_1 + m_2)} = \frac{900 \times 20.0i}{900 + 1800} = 6.67i \ m/s \]

What can we learn from these equations on the direction and magnitude of the velocity before and after the collision?

The cars are moving in the same direction as the lighter car’s original direction to conserve momentum.
The magnitude is inversely proportional to its own mass.