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PHYS 1443 – Section 002
Lecture #16

Wednesday, Oct. 31, 2007
Dr. Jae Yu

• Two Dimensional Collisions
• Center of Mass
• Fundamentals of Rotational Motions
• Rotational Kinematics
• Relationship between angular and linear quantities
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Announcements
• Make sure you come to the colloquium today

– 4pm in SH101
– Refreshment at 3:30pm in SH108

• A midterm grade discussion next Monday, Nov. 5
– Be sure not to miss this
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Two dimensional Collisions 
In two dimension, one needs to use components of momentum and 
apply momentum conservation to solve physical problems.
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Consider a system of two particle collisions and scatters in 
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 
conservation tells us:

1 21 2i im v m v+

And for the elastic collisions, the 
kinetic energy is conserved:

What do you think 
we can learn from 
these relationships?
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Example for Two Dimensional Collisions
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2
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Canceling mp and putting in all known quantities, one obtains

smv f /1080.2 5
1 ×=

From kinetic energy 
conservation:
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Solving Eqs. 1-3 
equations, one gets

(1)   1050.3cos37cos 5
21 ×=+ φff vv ο

Do this at 
home☺

φθ coscos 21 fpfp vmvm +=

φθ sinsin 21 fpfp vmvm − 0=
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Center of Mass
We’ve been solving physical problems treating objects as sizeless
points with masses, but in realistic situations objects have shapes 
with masses distributed throughout the body.    

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point. 

Consider a massless rod with two balls attached at either end.

CMx ≡

The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 
center of mass.

/a F M= ∑

What does above 
statement tell you 
concerning the forces being 
exerted on the system?

m1 m2
x1 x2

The position of the center of mass of this system is 
the mass averaged position of the systemxCM CM is closer to the 

heavier object
1 1 2 2m x m x+

1 2

                 
m m+
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Motion of a Diver and the Center of Mass

Diver performs a simple dive.
The motion of the center of mass 
follows a parabola since it is a 
projectile motion.

Diver performs a complicated dive.
The motion of the center of mass 
still follows the same parabola since 
it still is a projectile motion.

The motion of the center of mass 
of the diver is always the same. 
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Example 9-12
Thee people of roughly equivalent mass M on a lightweight (air-filled) 
banana boat sit along the x axis at positions x1=1.0m, x2=5.0m, and 
x3=6.0m.  Find the position of CM. 

Using the formula 
for CM
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Example for Center of Mass in 2-D
A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system.

Using the formula for CM for each 
position vector component
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Center of Mass of a Rigid Object
The formula for CM can be extended to a system of many particles
or a Rigid Object 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object
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Example of Center of Mass; Rigid Body

The formula for CM of a continuous object is

∫
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=
=

Lx

xCM xdm
M
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0
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Therefore

L

x dx
dm=λdx

Since the density of the rod (λ) is constant;

CMx

Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length.

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=α x
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The net effect of these small gravitational 
forces is equivalent to a single force acting on 
a point (Center of Gravity) with mass M.

Center of Mass and Center of Gravity
The center of mass of any symmetric object lies on the 
axis of symmetry and on any plane of symmetry, if  the 
object’s mass is evenly distributed throughout the body.

Center of Gravity

How do you think you 
can determine the CM of 
the objects that are not 
symmetric?

gF
Δmi

CM

Axis of 
symmetryOne can use gravity to locate CM.

1. Hang the object by one point and draw a vertical line 
following a plum-bob.

2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM. 

Δmig

Since a rigid object can be considered as a collection 
of small masses, one can see the total gravitational 
force exerted on the object as 

What does this 
equation tell you?

i
i

F= ∑ i
i

m g= Δ∑ M g=

The CoG is the point in an object as if all the gravitational force is acting on!
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass 
M is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system CMv

Total Momentum 
of the system CMp

Acceleration of 
the system CMa

The external force 
exerting on the system extF∑

If net external force is 0 0extF =∑ System’s momentum 
is conserved.

What about the 
internal forces?
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