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Wednesday, Nov. 14, 2007

Announcements

Problem #14 in HW#11

— The answer key in the homework system is incorrect many cases
— | gave all of you full credit for the problem.

— Please send me the list of problem numbers that you experienced the ghost
submission issues

* | will fix these by hand
Quiz results

— Class Average: 4/8 (50/100)
* Previous quizzes: 50/100, 49/100
— Top score: 8/8

There will be a quiz next Monday, Nov. 19, in the beginning of the
class

There will be a cloud chamber dedication ceremony at 12:30pm,
Friday, Nov. 16, in CPB 303

— You are welcome to come and see the chamber in action
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Physics Department
The University of Texas at Arlington

COLLOQUIUM

Photonic Crystals and Quantum Dots for
Infrared Imaging and Sensing

Dr. Weidong Zhou

Department of Engineering
University of Texas at Arlington

Room 101 SH

Abstract

Infrared (IR) photodetectors with wide spectral coverage (1 to 20mm) and controllable spectral
reschition are highly desirable for absorption spectroscopy gas sensing and hyper-spectral imaging
applications. Owing to the light-matter interaction modification, spectrally selective absorption can be
achieved in photonic crystal defect cawvities. making it a promising nanophotonic platform for the
spectrally selective mfrared sensing and hyper-spectral imaging. We present here the research resulis on
the proposed photonic crystal quantum dot infrared photodetectors (PC-QDIPs or PCIPs). We show that
significantly enhanced absorption at the defect mode can be obtained at swface-normal direction in a
dielectric single-defect photonic crystal slab, with an absorption enhancement factor greater than 4,000,
based on three-dimensional finite-difference time-domain technique. Complete absorption suppression
within the photonic bandgap region can also be observed in defect-free photonic crystal cavities. The dot-
in-a-well quantwm dot heterostructure was designed and grown by Molecular Beam Epitaxy technology,
with center absorption wavelength of 11wmn. The design and fabrication process will be discussed. along
with the experimental results. A slight dark current increase was measured in the over-temperature darlk-
current measurement, largely due to the ncreased surface area and large surface recombination velocity.
The spectrally selective enhancement in the PCIP dewvices was also depending on the spectral overlap of
the QDIP absorption peak and the PC defect mode. The work is in collaboration with groups within and
outside UTA, mchuding AFRI., Duke University and University of New Mexico, etc. The work is
supported by SPRING, AFOSR, AFRL CONTACT, TSGC, and NSF_|

Refreshments will be served in the Physics Library at 3:30 pm




Calculation of Moments of Inertia

Moments of inertia for large objects can be computed, if we assume that
the object consists of small volume elements with mass, Am,

The moment of inertia for the large rigid objectis 1= her Am j r’dm

It is sometimes easier to compute moments of inertia in terms

of volume of the elements rather than their mass How do we do this?

Using the volume density, p, replace d_m _ The moments of 2
dm in the above equation with dV. B I:> dm = V inertia becomes | = jpr dv
Example: Find the moment of inertia of a uniform hoop of mass M and radius R
about an axis perpendicular to the plane of the hoop and passing through its center.
2 The moment 2 2
C I:jrdm:Rjdm: 2
of inertia is MR
> . The moment of inertia for this
X What do you notice —
rom this result? object is the same as that of a
' point of mass M at the distance R.
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Example for Rigid Body Moment of Inertia

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis perpendicular to the rod and passing through its center of mass.

y The line density of therodis A =

so the masslet is

W The moment
X . ..
< > of inertia is

| :J'rzdm

M

L

dm =adx =M 4
L

:J-LIZ XM ix :M|:£X3:|
-Li2 L L |3

- — 2 XM . M[1 .,
What is the moment of inertia jr dm = _[ —dx= T{g Xﬂ
: . 0
when the rotational axis is at L M VL2 0
one end of the rod. (L) - ] = (1) =
3L 3

Will this be the same as the above. Since the moment of inertia is resistance to motion, it makes perfect sense
Why or why not? for it to be harder to move when it is rotating about the axis at one end.
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Parallel Axis Theorem

Moments of inertia for highly symmetric object is easy to compute if the
rotational axis is the same as the axis of symmetry. However if the axis of
rotation does not coincide with axis of symmetry, the calculation can still be
done in a simple manner using parallel-axis theorem. | = o, + MD?

a

Moment of inertia is defined as | = J' r’dm =j(x2+y2)dm 2)

(xy)  Sincexandyare X=X +X Y=YutY

One can substitute x and y in Eq. 1 to obtain
: I__H CM+X yCM+y hm
CM

(Xcl\ill,yCM) :(XCM + yCM )_[dm+ 2XCMIX dm+2yCij'dm+I(X-2+y-2)jm
: _ Since the x"and y’ are the

_[x'dmzo jy'dmzo

x distances from CM, by definition
Therefore, the paraIIeI axis theorem

What does this
theorem tell you?

I—(xCM+yCM jdm+j X' +y'2)1|m =MD?* + 1,

Moment of inertia of any object about any arbitrary axis is the sum of
o7  moment of inertia for a rotation about the CM and that of the CM
about the rotation axis.




Example for

Parallel Axis Theorem

Calculate the moment of inertia of

axis that goes through one end of the rod, using parallel-axis theorem.

a uniform rigid rod of length L and mass M about an

y

CM dx

< Is R

the CM

Using the parallel axis theorem

L/2
—ﬂix The .moment Of |CM _ 2d _ .‘-LIZ X |\/| |:£ X3:l
4 > inertia about . L/2 3

The line density of therod is 4 = %

so the masslet is dm= ﬂdx:de

—-L/2

G5 )

3L\ 2 2 3Ll 4 ) 12

M2 (LY M2 ML2 ML
M: —|— =

12 12 4 3

| =1, +D’M=

2

The result is the same as using the definition of moment of inertia.

Parallel-axis theorem is useful to compute moment of inertia of a rotation of a rigid
object with complicated shape about an arbitrary axis
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Torque & Angular Acceleration

Let’s consider a point object with mass m rotating on a circle.
What forces do you see in this motion?

The tangential force #, and the radial force &,
The tangential force ,is Ft =Mma =Mra

The torque due to tangential force F,is 7= Ftr =mar = mria = la
What do you see from the above relationship? =l

What does this mean? Torgue acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship?  Analogs to Newton’s 2" law of motion in rotation.

How about arigid object?  The external tangential force diF,is dF, = dma, =dmre

The torque due to tangential force F,is  dz =dRr = (rzdm)a
The total torque is > 7= aJ. r’dm=lq

What is the contribution due Contribution from radial force is 0, because its
dial f d whv? line of action passes through the pivoting
Wednesday, Nov. 14, 2 to radia ana wny: , 007 point, making the moment arm 0.

Dr. Jaehoon Yu



Example for Torque and Angular Acceleration

A uniform rod of length £ and mass 9 s attached at one end to a frictionless pivot and is
free to rotate about the pivot in the vertical plane. The rod is released from rest in the
horizontal position. What are the initial angular acceleration of the rod and the Initial linear
acceleration of its right end?

L2 The only force generating torque is the gravitational force g

L L
T:Fd :FE:MQEZIQ

| Mg

L
Since the moment of inertia of the rod | _ erdez IL 2 MX:(MJ X _ ML
when it rotates about one end 0 0 L) 3

w_ ~ MgL 3¢

We obtain o = = > =
ol 2ML® 2L
between tangential and a = La=—g |
angular acceleration 2 The tlp of the rod falls faster than
an object undergoing a free fall.
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Rotational Kinetic Energy

What do you think the kinetic energy of a rigid object
that is undergoing a circular motion is?

— 1
Kinetic energy of a masslet, m, K.=—myv
» Moving at a tangential speed, v, Is

] 1'1

Since a rigid body Is a collection of masslets, the total kinetic energy of the

rigid object is
1 1
Ke=2 =2 2 mie E > i’ p

2
Since moment of Inertia, I, is defined as | :Zmri

> 1 2 .z
i:Emiria)

1
The above expression is simplified as KR — E Ia)2
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