Similarity between Linear and Angular Quantities

Conditions for Equilibrium

Mechanical Equilibrium

How to solve equilibrium problems?

A few examples of mechanical equilibrium

Elastic properties of solids

Today’s homework is HW#14, due 9pm, Monday, Dec. 3!!
Announcements

• Reading assignments
 – CH12 – 5, 6 and 7

• Submit your special projects after the class, if you haven’t already done so

• Final exam
 – Date and time: 11am – 12:30 pm, Monday, Dec. 10
 – Location: SH103
 – Covers: CH9.1 – what we finish next Wednesday, Dec. 5
Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show striking similarity.

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Linear</th>
<th>Rotational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Mass M</td>
<td>Moment of Inertia $I = mr^2$</td>
</tr>
<tr>
<td>Length of motion</td>
<td>Distance r</td>
<td>Angle θ (Radian)</td>
</tr>
<tr>
<td>Speed</td>
<td>$v = \frac{\Delta r}{\Delta t}$</td>
<td>$\omega = \frac{\Delta \theta}{\Delta t}$</td>
</tr>
<tr>
<td>Acceleration</td>
<td>$a = \frac{\Delta v}{\Delta t}$</td>
<td>$\alpha = \frac{\Delta \omega}{\Delta t}$</td>
</tr>
<tr>
<td>Force</td>
<td>Force $\vec{F} = ma$</td>
<td>Torque $\vec{\tau} = \vec{I}\alpha$</td>
</tr>
<tr>
<td>Work</td>
<td>Work $W = \vec{F} \cdot \vec{d}$</td>
<td>Work $W = \tau \theta$</td>
</tr>
<tr>
<td>Power</td>
<td>$P = \vec{F} \cdot \vec{v}$</td>
<td>$P = \tau \omega$</td>
</tr>
<tr>
<td>Momentum</td>
<td>$\vec{p} = m\vec{v}$</td>
<td>$\vec{L} = I\vec{\omega}$</td>
</tr>
<tr>
<td>Kinetic Energy</td>
<td>Kinetic $K = \frac{1}{2}mv^2$</td>
<td>Rotational $K_r = \frac{1}{2}I\omega^2$</td>
</tr>
</tbody>
</table>
Conditions for Equilibrium

What do you think the term “An object is at its equilibrium” means?

The object is either at rest (Static Equilibrium) or its center of mass is moving at a constant velocity (Dynamic Equilibrium).

When do you think an object is at its equilibrium?

Translational Equilibrium: Equilibrium in linear motion

\[\sum \vec{F} = 0 \]

Is this it?

The above condition is sufficient for a point-like object to be at its translational equilibrium. However, for an object with size, this is not sufficient. One more condition is needed. What is it?

Let’s consider two forces equal in magnitude but in opposite direction acting on a rigid object as shown in the figure. What do you think will happen?

The object will rotate about the CM. The net torque acting on the object about any axis must be 0.

\[\sum \vec{\tau} = 0 \]

For an object to be at its static equilibrium, the object should not have linear or angular speed.

\[v_{CM} = 0 \quad \omega = 0 \]
More on Conditions for Equilibrium

To simplify the problem, we will only deal with forces acting on x-y plane, giving torque only along z-axis. What do you think the conditions for equilibrium be in this case?

The six possible equations from the two vector equations turns to three equations.

\[\sum \vec{F} = 0 \quad \rightarrow \quad \sum F_x = 0 \quad \text{AND} \quad \sum F_y = 0 \quad \rightarrow \quad \sum \tau = 0 \quad \rightarrow \quad \sum \tau_z = 0 \]

What happens if there are many forces exerting on an object?

If an object is at its translational static equilibrium, and if the net torque acting on the object is 0 about one axis, the net torque must be 0 about any arbitrary axis.

Why is this true?

Because the object is **not moving**, no matter what the rotational axis is, there should not be any motion. It is simply a matter of mathematical manipulation.
Center of Gravity Revisited

When is the center of gravity of a rigid body the same as the center of mass?

Under the uniform gravitational field throughout the body of the object.

Let's consider an arbitrary shaped object

The center of mass of this object is at

\[\mathbf{CM} = \sum_i m_i \mathbf{x}_i \]

Let's now examine the case that the gravitational acceleration on each point is \(g_i \)

Since the CoG is the point as if all the gravitational force is exerted on, the torque due to this force becomes

\[\sum_i \sum_j m_i g_i x_{ij} \]

Generalized expression for different \(g \) throughout the body

If \(g \) is uniform throughout the body

\[(m_1 + m_2 + \cdots) g x_{CoG} = (m_1 x_1 + m_2 x_2 + \cdots) g \]

\[x_{CoG} = \frac{\sum_i m_i x_i}{\sum_i m_i} = x_{CM} \]
How do we solve equilibrium problems?

1. Identify all the forces and their directions and locations
2. Draw a free-body diagram with forces indicated on it with their directions and locations properly noted
3. Write down force equation for each x and y component with proper signs
4. Select a rotational axis for torque calculations ➔ Selecting the axis such that the torque of one of the unknown forces become 0 makes the problem easier to solve
5. Write down the torque equation with proper signs
6. Solve the equations for unknown quantities
Example for Mechanical Equilibrium

A uniform 40.0 N board supports the father and the daughter each weighing 800 N and 350 N, respectively, and is not moving. If the support (or fulcrum) is under the center of gravity of the board, and the father is 1.00 m from CoG, what is the magnitude of the normal force \(n \) exerted on the board by the support?

Since there is no linear motion, this system is in its translational equilibrium

\[
\sum F_x = 0 \\
\sum F_y = n - M_B g - M_F g - M_D g = 0
\]

Therefore the magnitude of the normal force

\[
n = 40.0 + 800 + 350 = 1190N
\]

Determine where the child should sit to balance the system.

The net torque about the fulcrum by the three forces are

Therefore to balance the system the daughter must sit

\[
\tau = M_B g \cdot 0 + n \cdot 0 + M_F g \cdot 1.00 - M_D g \cdot x = 0 \\
\chi = \frac{M_F g}{M_D g} \cdot 1.00 m = \frac{800}{350} \cdot 1.00 m = 2.29 m
\]
Example for Mech. Equilibrium Cont’d

Determine the position of the child to balance the system for different position of axis of rotation.

The net torque about the axis of rotation by all the forces are

\[\tau = M_B g \cdot \frac{x}{2} + M_F g \cdot \left(1.00 + \frac{x}{2}\right) - n \cdot \frac{x}{2} - M_D g \cdot \frac{x}{2} = 0 \]

Since the normal force is

\[n = M_B g + M_F g + M_D g \]

The net torque can be rewritten

\[\tau = M_B g \cdot \frac{x}{2} + M_F g \cdot \left(1.00 + \frac{x}{2}\right) - (M_B g + M_F g + M_D g) \cdot \frac{x}{2} - M_D g \cdot \frac{x}{2} \]

\[= M_F g \cdot 1.00 - M_D g \cdot x = 0 \]

Therefore

\[x = \frac{M_F g}{M_D g} \cdot 1.00 m = \frac{800}{350} \cdot 1.00 m = 2.29 m \]

What do we learn?

No matter where the rotation axis is, net effect of the torque is identical.

Monday, Nov. 26, 2007

PHY 1443-002, Fall 2007

Dr. Jaehoon Yu
Example 12 – 8

A 5.0 m long ladder leans against a wall at a point 4.0m above the ground. The ladder is uniform and has mass 12.0kg. Assuming the wall is frictionless (but ground is not), determine the forces exerted on the ladder by the ground and the wall.

First the translational equilibrium, using components

\[\sum F_x = F_{Gx} - F_W = 0 \]
\[\sum F_y = -mg + F_{Gy} = 0 \]

Thus, the y component of the force by the ground is

\[F_{Gy} = mg = 12.0 \times 9.8 \, N = 118 \, N \]

The length \(x_0 \) is, from Pythagorean theorem

\[x_0 = \sqrt{5.0^2 - 4.0^2} = 3.0 \, m \]
Example 12 – 8 cont’d

From the rotational equilibrium
\[\sum \tau = -mgx_0/2 + F_W \cdot 4.0 = 0 \]

Thus the force exerted on the ladder by the wall is
\[F_W = \frac{mgx_0}{2} \cdot \frac{118 \cdot 1.5}{4.0} = 44N \]

The x component of the force by the ground is
\[\sum F_x = F_{Gx} - F_W = 0 \]

Solve for \(F_{Gx} = F_W = 44N \)

Thus the force exerted on the ladder by the ground is
\[F_G = \sqrt{F_{Gx}^2 + F_{Gy}^2} = \sqrt{44^2 + 118^2} \approx 130N \]

The angle between the ground force to the floor
\[\theta = \tan^{-1} \left(\frac{F_{Gy}}{F_{Gx}} \right) = \tan^{-1} \left(\frac{118}{44} \right) = 70^\circ \]
Example for Mechanical Equilibrium

A person holds a 50.0N sphere in his hand. The forearm is horizontal. The biceps muscle is attached 3.00 cm from the joint, and the sphere is 35.0 cm from the joint. Find the upward force exerted by the biceps on the forearm and the downward force exerted by the upper arm on the forearm and acting at the joint. Neglect the weight of forearm.

Since the system is in equilibrium, from the translational equilibrium condition

\[\sum F_x = 0 \]
\[\sum F_y = F_B - F_U - mg = 0 \]

From the rotational equilibrium condition

\[\sum \tau = F_U \cdot 0 + F_B \cdot d - mg \cdot l = 0 \]

Thus, the force exerted by the biceps muscle is

\[F_B \cdot d = mg \cdot l \]
\[F_B = \frac{mg \cdot l}{d} = \frac{50.0 \times 35.0}{3.00} = 583 N \]

Force exerted by the upper arm is

\[F_U = F_B - mg = 583 - 50.0 = 533 N \]
Elastic Properties of Solids

We have been assuming that the objects do not change their shapes when external forces are exerting on it. Is this realistic?

No. In reality, the objects get deformed as external forces act on it, though the internal forces resist the deformation as it takes place.

Deformation of solids can be understood in terms of Stress and Strain

Stress: A quantity proportional to the force causing the deformation.
Strain: Measure of the degree of deformation

It is empirically known that for small stresses, strain is proportional to stress.

The constants of proportionality are called Elastic Modulus

\[\text{Elastic Modulus} = \frac{\text{stress}}{\text{strain}} \]

Three types of Elastic Modulus

1. **Young's modulus**: Measure of the elasticity in length
2. **Shear modulus**: Measure of the elasticity in plane
3. **Bulk modulus**: Measure of the elasticity in volume
Young's Modulus

Let's consider a long bar with cross sectional area A and initial length L_i:

\[F_{ex} = \text{stress tensile} \]

Young's Modulus is defined as

\[E \equiv \frac{F_{ex}}{\Delta L/L_i} \]

What is the unit of Young's Modulus?

- **Tensile stress**
 \[\text{Tensile Stress} \equiv \frac{F_{ex}}{A} \]
 - Used to characterize a rod or wire stressed under tension or compression

- **Tensile strain**
 \[\text{Tensile Strain} \equiv \frac{\Delta L}{L_i} \]

Experimental Observations

1. For a fixed external force, the change in length is proportional to the original length.
2. The necessary force to produce the given strain is proportional to the cross sectional area.

Elastic limit: Maximum stress that can be applied to the substance before it becomes permanently deformed.
Bulk Modulus

Bulk Modulus characterizes the response of a substance to uniform squeezing or reduction of pressure.

Bulk Modulus is defined as

\[
B \equiv \frac{\text{Volume Stress}}{\text{Volume Strain}} = -\frac{\Delta F/A}{\Delta V/V_i} = -\frac{\Delta P}{\Delta V/V_i}
\]

If the pressure on an object changes by \(\Delta P = \Delta F/A\), the object will undergo a volume change \(\Delta V\).

Volume stress = pressure

Pressure \equiv \frac{\text{Normal Force}}{\text{Surface Area the force applies}} = \frac{F}{A}

Compressibility is the reciprocal of Bulk Modulus

Because the change of volume is reverse to change of pressure.
Example for Solid’s Elastic Property

A solid brass sphere is initially under normal atmospheric pressure of 1.0×10^5 N/m2. The sphere is lowered into the ocean to a depth at which the pressures is 2.0×10^7 N/m2. The volume of the sphere in air is 0.5 m3. By how much its volume change once the sphere is submerged?

Since bulk modulus is

$$B = -\frac{\Delta P}{\Delta V/V_i}$$

The amount of volume change is

$$\Delta V = -\frac{\Delta PV_i}{B}$$

From table 12.1, bulk modulus of brass is 6.1×10^{10} N/m2

The pressure change ΔP is

$$\Delta P = P_f - P_i = 2.0 \times 10^7 - 1.0 \times 10^5 \approx 2.0 \times 10^7$$

Therefore the resulting volume change ΔV is

$$\Delta V = V_f - V_i = -\frac{2.0 \times 10^7 \times 0.5}{6.1 \times 10^{10}} = -1.6 \times 10^{-4} \text{ m}^3$$

The volume has decreased.