
PHYS 1443 – Section 002 Lecture #23

Wednesday, Nov. 28, 2007 Dr. Jae Yu

- Density and Specific Gravity
- Fluid and Pressure
- Variation of Pressure vs Depth
- Pascal's Principle
- Absolute and Relative Pressure
- Buoyant Force and Archimedes' Principle

Announcements

- Final exam
 - Date and time: 11am 12:30 pm, Monday, Dec. 10
 - Location: SH103
 - Covers: CH9.1 what we finish next Wednesday, Dec. 5
- Quiz result:
 - Class average: 3.3/6
 - Equivalent to 55/100
 - Previous averages: 50, 49 and 50
 - Top score: 6/6
- Last quiz next Wednesday, Dec. 5
 - Early in the class

Physics Department The University of Texas at Arlington COLLOQUIUM

Semiconductor Process Qualification – From Concept to Full Scale Manufacturing

Dr. Charles Dark National Semiconductors

4:00 pm Wednesday, November 28, 2007 Room 101 SH

Abstract

The development of a new semiconductor process is examined from the initial concept phase to full scale manufacturing. The development process includes examination of a multitude area, ranging from desired performance, available materials, process toolsets, cost, delivery schedules and reliability performance. There will a discussion of a typical process development cycle and how input and deliverables from various groups all are combined to produce a manufacturable process capable of shipping product to a customer. There will also be discussion how the development of semiconductor technologies extends beyond the actual integrated circuit manufactures to supporting infrastructure such as Circuit Simulation / layout, Process equipment Vendors, Metrology Vendors and Failure Analysis.

Refreshments will be served in the Physics Library at 3:30 pm

Density and Specific Gravity

Density, ρ (rho), of an object is defined as mass per unit volume

$$\rho \equiv \frac{M}{V} \qquad \begin{array}{c} \text{Unit?} & kg / m^3 \\ \text{Dimension?} & [ML^{-3}] \end{array}$$

Specific Gravity of a substance is defined as the ratio of the density of the substance to that of water at 4.0 °C (ρ_{H2O} =1.00g/cm³).

$$SG \equiv \frac{\rho_{substance}}{\rho_{H_2O}}$$

What do you think would happen of a substance in the water dependent on SG?

Unit?NoneDimension?NoneSG > 1Sink in the waterSG < 1Float on the surface

Fluid and Pressure

What are the three states of matter?

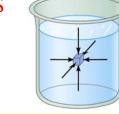
Solid, Liquid and Gas

How do you distinguish them?

Using the time it takes for a particular substance to change its shape in reaction to external forces.

What is a fluid?

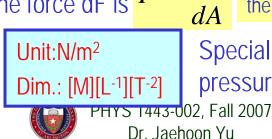
A collection of molecules that are **randomly arranged** and **loosely bound** by forces between them or by an external container.


Special SI unit for

pressure is Pascal

We will first learn about mechanics of fluid at rest, *fluid statics*.

In what ways do you think fluid exerts stress on the object submerged in it?


Fluid cannot exert shearing or tensile stress. Thus, the only force the fluid exerts on an object immersed in it is the force perpendicular to the surface of the object. This force by the fluid on an object usually is expressed in the form of $P_{P_{int}} = F$ $P \equiv \frac{F}{-}$ the force per unit area at the given depth, the pressure, defined as

Expression of pressure for an Expression of pressure for an infinitesimal area dA by the force dF is $P = \frac{dF}{dA}$

What is the unit and the dimension of pressure?

Wednesday, Nov. 28, 2007

Note that pressure is a scalar quantity because it's the magnitude of the force on a surface area A.

 $1Pa \equiv 1N / m^2$

Example for Pressure

The mattress of a water bed is 2.00m long by 2.00m wide and 30.0cm deep. a) Find the weight of the water in the mattress.

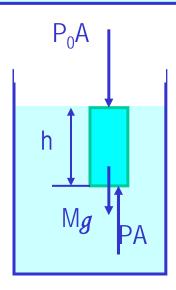
The volume density of water at the normal condition (0°C and 1 atm) is 1000kg/m³. So the total mass of the water in the mattress is

 $\mathcal{M} = \rho_W V_M = 1000 \times 2.00 \times 2.00 \times 0.300 = 1.20 \times 10^3 kg$

Therefore the weight of the water in the mattress is

$$W = mg = 1.20 \times 10^3 \times 9.8 = 1.18 \times 10^4 N$$

b) Find the pressure exerted by the water on the floor when the bed rests in its normal position, assuming the entire lower surface of the mattress makes contact with the floor.


Since the surface area of the mattress is 4.00 m², the pressure exerted on the floor is

$$P = \frac{F}{A} = \frac{mg}{A} = \frac{1.18 \times 10^4}{4.00} = 2.95 \times 10^3$$

Variation of Pressure and Depth

Water pressure increases as a function of depth, and the air pressure decreases as a function of altitude. Why?

It seems that the pressure has a lot to do with the total mass of the fluid above the object that puts weight on the object.

Let's imagine a liquid contained in a cylinder with height h and the cross sectional area \mathcal{A} immersed in a fluid of density ρ at rest, as shown in the figure, and the system is in its equilibrium.

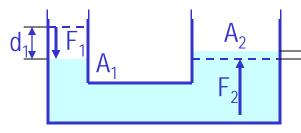
If the liquid in the cylinder is the same substance as the fluid, the mass of the liquid in the cylinder is $M = \rho V = \rho A h$

Since the system is in its equilibrium

Therefore, we obtain $P = P_0 + \rho g h$ Atmospheric pressure P₀ is $1.00 atm = 1.013 \times 10^5 P a$

$$PA - P_0A - Mg = PA - P_0A - \rho Ahg = 0$$

The pressure at the depth h below the surface of a fluid open to the atmosphere is greater than atmospheric pressure by ρgh .


Pascal's Principle and Hydraulics

A change in the pressure applied to a fluid is transmitted undiminished to every point of the fluid and to the walls of the container.

 $P = P_0 + \rho g h$ What happens if P₀ is changed?

The resultant pressure P at any given depth h increases as much as the change in P_0 .

This is the principle behind hydraulic pressure. How?

A₂ Since the pressure change caused by the the force F₁ applied onto the area A₁ is $P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$ transmitted to the F_2 on an area A_2 . $F_2 = \frac{A_2}{A_1} F_1$ In other words, the force gets multiplied by the ratio of the areas A_2/A_1 and is

transmitted to the force F_2 on the surface.

Therefore, the resultant force F_2 is

This seems to violate some kind of conservation law, doesn't it?

by the forces are still the same. PHYS 1443-002, Fall 2007 Dr. Jaehoon Yu

No, the actual displaced volume of the

fluid is the same. And the work done

$$F_2 = \frac{d_1}{d_2} F_1$$

Example for Pascal's Principle

In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular cross section and a radius of 5.00cm. This pressure is transmitted by a liquid to a piston that has a radius of 15.0cm. What force must the compressed air exert to lift a car weighing 13,300N? What air pressure produces this force?

Using the Pascal's principle, one can deduce the relationship between the forces, the force exerted by the compressed air is

$$F_1 = \frac{A_1}{A_2} F_2 = \frac{\pi \left(0.05\right)^2}{\pi \left(0.15\right)^2} \times 1.33 \times 10^4 = 1.48 \times 10^3 N$$

Therefore the necessary pressure of the compressed air is

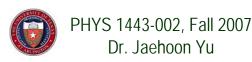
$$\boldsymbol{P} = \frac{F_1}{A_1} = \frac{1.48 \times 10^3}{\pi (0.05)^2} = 1.88 \times 10^5 \, Pa$$

Wednesday, Nov. 28, 2007

Example for Pascal's Principle

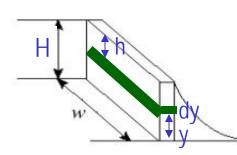
Estimate the force exerted on your eardrum due to the water above when you are swimming at the bottom of the pool with a depth 5.0 m.

We first need to find out the pressure difference that is being exerted on the eardrum. Then estimate the area of the eardrum to find out the force exerted on the eardrum.


Since the outward pressure in the middle of the eardrum is the same as normal air pressure

$$P - P_0 = \rho_W gh = 1000 \times 9.8 \times 5.0 = 4.9 \times 10^4 Pa$$

Estimating the surface area of the eardrum at 1.0cm²=1.0x10⁻⁴ m², we obtain


$$F = (P - P_0)A \approx 4.9 \times 10^4 \times 1.0 \times 10^{-4} \approx 4.9 N$$

Wednesday, Nov. 28, 2007

Example for Pascal's Principle

Water is filled to a height H behind a dam of width w. Determine the resultant force exerted by the water on the dam.

Since the water pressure varies as a function of depth, we will have to do some calculus to figure out the total force.

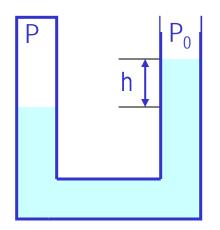
The pressure at the depth h is

$$P = \rho g h = \rho g (H - y)$$

The infinitesimal force dF exerting on a small strip of dam dy is

$$dF = PdA = \rho g (H - y) w dy$$

Therefore the total force exerted by the water on the dam is


$$F = \int_{y=0}^{y=H} \rho g (H - y) w dy = \rho g w \left[Hy - \frac{1}{2} y^2 \right]_{y=0}^{y=H} = \frac{1}{2} \rho g w H^2$$

Wednesday, Nov. 28, 2007

Absolute and Relative Pressure

How can one measure pressure?

One can measure the pressure using an open-tube manometer, where one end is connected to the system with unknown pressure P and the other open to air with pressure P_0 .

The measured pressure of the system is $P = P_0 + \rho g h$

This is called the <u>absolute pressure</u>, because it is the actual value of the system's pressure.

In many cases we measure the pressure difference with respect to the atmospheric pressure to avoid the effect of the changes in P₀ that depends on the environment. This is called <u>gauge or relative pressure</u>.

$$P_G = P - P_0 = \rho g h$$

The common barometer which consists of a mercury column with one end closed at vacuum and the other open to the atmosphere was invented by Evangelista Torricelli.

Since the closed end is at vacuum, it does not exert any force. 1 atm of air pressure pushes mercury up 76cm. So 1 atm is $P_0 = \rho g h = (13.595 \times 10^3 kg / m^3)(9.80665 m / s^2)(0.7600 m)$ $= 1.013 \times 10^5 P a = 1 a tm$

If one measures the tire pressure with a gauge at 220kPa the actual pressure is 101kPa+220kPa=303kPa.