PHYS 1443 – Section 002 Lecture #2

Wednesday, August 27, 2008 Dr. Jaehoon Yu

- What do we want learn from this class?
- What is Physics?
- Brief history of physics
- Models, theories, laws and principles
- Uncertainties and significant figures
- Standards and units
- Estimates
- Dimensions and dimensional analysis
- Fundamentals in kinematics

Announcements

- Reminder for Reading assignment #1: Read and follow through all sections in appendices A and B by Wednesday, Sept. 3
 - There will be a quiz next Wednesday, Sept. 3, on this reading assignment
- Homework
 - 40 out of 68 registered so far... Excellent!!
 - But only 9 submitted the answers!!
 - Must try to download and submit the answer to obtain full credit!!
 - Trouble w/ UT e-ID?
 - Check out https://hw.utexas.edu/bur/commonProblems.html
- 17 out of 68 subscribed to e-mail list
 - 5 point extra credit if done by this Friday, Aug. 29
 - 3 point extra credit if done by next Wednesday, Sept. 3
- Want to keep up with LHC start up news?
 - First collision on Sept. 10, 2008, during the day in CERN time (7 hours ahead)
 - See <u>http://lhc-first-beam.web.cern.ch/lhc-first-beam/Welcome.html</u>

What do we want to learn in this class?

- Physics is everywhere around you.
- Understand the fundamental principles that surrounds you in everyday lives...
- Identify what laws of physics applies to what phenomena and use them appropriately
- Understand the impact of such physical laws
- Learn how to research and analyze what you observe.
- Learn how to express observations and measurements in mathematical language
- Learn how to express your research in systematic manner in writing
- I don't want you to be scared of PHYSICS!!!

Most importantly, let us have a lot of FUN!!

Why do Physics?

- Exp. **•** To understand nature through experimental observations and measurements (**Research**)
- Theory Establish limited number of fundamental laws, usually with mathematical expressions Predict the nature's course

 - \Rightarrow Theory and Experiment work hand-in-hand
 - \Rightarrow Theory works generally under restricted conditions
 - \Rightarrow Discrepancies between experimental measurements and theory are good for improvements
 - \Rightarrow Improves our everyday lives, though some laws can take a while till we see them amongst us

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism, and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time, and energy (mechanics)
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast, and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Models, Theories and Laws

- Models: An analogy or a mental image of a phenomena in terms of something we are familiar with
 - Thinking light as waves, behaving just like water waves
 - Often provide insights for new experiments and ideas
- Theories: More systematically improved version of models
 - Can provide quantitative predictions that are testable and more precise
- Laws: Certain concise but general statements about how nature behaves
 - Energy conservation
 - The statement must be found experimentally valid to become a law
- Principles: Less georglustatements of how nature behaves
 Has some level of arbitrariness

Uncertainties

- Physical measurements have limited precision, however good they are, due to:
- Stat.{ Number of measurements
- Quality of instruments (meter stick vs micro-meter)
 Syst. Experience of the person doing measurements
 Etc
 - In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values

Significant Figures

- Significant figures denote the precision of the measured values
 - Significant figures: non-zero numbers or zeros that are not place-holders
 - 34, 34.2, 0.001, 34.100
 - 34 has two significant digits
 - 34.2 has 3
 - 0.001 has one because the 0's before 1 are place holders
 - 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - When there are many 0's, use scientific notation for simplicity:
 - $31400000 = 3.14 \times 10^{7}$
 - $0.00012 = 1.2 \times 10^{-4}$

Significant Figures

- Operational rules:
 - Addition or subtraction: Keep the <u>smallest number of</u> <u>decimal place</u> in the result, independent of the number of significant digits: 12.001+ 3.1= 15.1
 - Multiplication or Division: Keep the <u>smallest</u> <u>significant figures</u> in the result: $12.001 \times 3.1 = 37$, because the smallest significant figures is ?.

What does this mean?

The worst precision determines the precision the overall operation!!

Needs for Standards and Units

- Three basic quantities for physical measurements
 - Length, Mass, and Time
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called <u>SI</u> (*System Internationale*) was established in 1960
 - <u>Length</u> in meters (m)
 - <u>Mass</u> in kilo-grams (kg)
 - <u>Time</u> in seconds (s)

Definition of Base Units

SI Units	Definitions
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during a time interval of <u>1/299,792,458 of a second</u> .
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium in International Bureau of Weights and Measure in France.
1 <i>s (Time)</i>	One second is the <u>duration of 9,192,631,770</u> <u>periods of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.

There are prefixes that scales the units larger or smaller for convenience (see pg. 7)
Units for other quantities, such as Kelvins for temperature, for easiness of use

Prefixes, expressions and their meanings Larger Smaller

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸
- zetta (Z): 10²¹
- yotta (Y): 10²⁴

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (μ): 10⁻⁶
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸
- zepto (z): 10⁻²¹
- yocto (y): 10⁻²⁴

International Standard Institutes

- International Bureau of Weights and Measure <u>http://www.bipm.fr/</u>
 - Base unit definitions: <u>http://www.bipm.fr/enus/3_SI/base_units.html</u>
 - Unit Conversions: <u>http://www.bipm.fr/enus/3_SI/</u>
- US National Institute of Standards and Technology (NIST) <u>http://www.nist.gov/</u>

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	ст
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	m
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Examples 1.3 and 1.4 for Unit Conversions

 Ex 1.3: An apartment has a floor area of 880 square feet (ft²). Express this in square meters (m²).

What do we need to know?

880 ft² = 880 ft² ×
$$\left(\frac{12in}{1ft}\right)^{2} \left(\frac{0.0254 \text{ m}}{1 \text{ in}}\right)^{2}$$

= 880 ft² × $\left(\frac{0.0929 \text{ m}^{2}}{1 \text{ ft}^{2}}\right)$
= 880 × 0.0929 m² ≈ 82m²

Ex 1.4: Where the posted speed limit is 55 miles per hour (mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) kilometers per hour (km/h)? $1 \text{ mi} = (5280 \text{ ft}) \left(\frac{12 \text{ in}}{1 \text{ ft}}\right) \left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right) = 1609 \text{ m} = 1.609 \text{ km}$ (a) 55 mi/h = (55 mi) $\left(\frac{1609 \text{ m}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right) = 25 \text{ m/s}$ (b) 55 mi/h = (55 mi) $\left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right) \left(\frac{1}{1 \text{ h}}\right) = 88 \text{ km/hr}$ Wednesday, August 27, 2008
PHYS 1443-002, Fall 2008
Dr. Jaehoon Yu

Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: $10^3 = 1,000$
 - Round up for Order of magnitude estimate; $8x10^7 \sim 10^8$
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Example 1.8

Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

Dr. Jaehoon Yu