PHYS 1443 – Section 002 Lecture #3

Wednesday, September 3, 2008 Dr. Jaehoon Yu

- Dimensions and Dimensional Analysis
- Fundamentals of kinematics
- One Dimensional Motion
- Displacement
- Speed and Velocity
- Acceleration
- Motion under constant acceleration

Today's homework is homework #2, due 9pm, Monday, Sept. 8!!

Announcements

- Homework
 - 58 out of 68 registered so far.
 - Still have trouble w/ UT e-ID?
 - Check out https://hw.utexas.edu/bur/commonProblems.html
 - 25% of the total. So it is very important for you to set this up ASAP!!!
- 49 out of 68 subscribed to the class e-mail list
 - 3 point extra credit if done by midnight today, Wednesday, Sept. 3
 - Will send out a test message tomorrow, Thursday, for confirmation
 - Please reply only to me NOT to all!!
- Physics Department colloquium schedule at
 - <u>http://www.uta.edu/physics/main/phys_news/colloquia/2008/Fall2008.html</u>
 - Today's topic is Nanostructure Fabrication
- The first term exam is to be on Wednesday, Sept. 17
 - Will cover CH1 what we finish on Monday, Sept. 15 + Appendices A and B
 - Mixture of multiple choices and essay problems
 - Jason will conduct a review in the class Monday, Sept. 15

PHYS1443-002-Fall 2008

Physics Department The University of Texas at Arlington COLLOQUIUM

Nanostructures Fabricated by Glancing Angle Deposition and Their Novel Applications

Dr. Yiping Zhao

Department of Physics and Astronomy Nanoscale Science and Engineering Center University of Georgia

Wednesday, September 3, 2008 at 4:00 pm in Room 101 SH

Abstract

Glancing Angle Deposition (GLAD) is a simple nanofabrication technique that combines oblique angle deposition (OAD) with substrate manipulations and source controls in a physical vapor deposition system. The geometry shadowing effect is the dominant growth mechanism resulting in the formation of various nanostructure arrays by programming the substrate rotation in polar and/or azimuthal direction. With recent advance in a multilayer deposition procedure, one can design complex and multifunctional heterogeneous nanostructures. In addition, with a co-deposition system of two or more sources, novel nanocomposites or doped nanostructure arrays can be produced, which results in nanostructures with different morphology. In this talk, I will highlight our recent progress in multi-component nanorod array fabrication. We find that the multicomponent nanorods can be used as a high sensitive virus and bacteria sensor base on florescence enhancement. Using a unique multilayer deposition configuration, catalytically driven nanomotors have also been fabricated and demonstrated, which can directly convert chemical energy into mechanical energy. This device holds a great promising to mimic biological motors.

> Refreshments will be served in the Physics Lounge at 3:30 pm PHYS1443-002-Fall 2008

Dimension and Dimensional Analysis

- An extremely useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - *Length* (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are treated as algebraic quantities: Can perform two algebraic operations; multiplication or division

Dimension and Dimensional Analysis

- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [\mathcal{L}]/[\mathcal{T}] = [\mathcal{L}]/[\mathcal{T}^{-1}]$
 - Distance (L) traveled by a car running at the speed V in time T

 $-\mathcal{L} = \mathcal{V}^{\star}\mathcal{T} = [\mathcal{L}/\mathcal{T}]^{\star}[\mathcal{T}] = [\mathcal{L}]$

• More general expression of dimensional analysis is using exponents: eg. $[v] = [\mathcal{L}^n \mathcal{T}^m] = [\mathcal{L}][\mathcal{T}^1]$ where n = 1 and m = -1

Examples

- Show that the expression [v] = [at] is dimensionally correct
 - Speed: [v] =[L]/[T]
 - Acceleration: $[a] = [L]/[T]^2$
 - Thus, $[at] = (L/T^2)xT = LT^{(-2+1)} = LT^{-1} = [L]/[T] = [v]$

•Suppose the acceleration a of a circularly moving particle with speed v and radius r is proportional to r^n and v^m . What are n and m?

Some Fundamentals

- Kinematics: Description of Motion without understanding the cause of the motion
- Dynamics: Description of motion accompanied with understanding the cause of the motion
- Vector and Scalar quantities:
 - Scalar: Physical quantities that require magnitude but no direction
 - Speed, length, mass, height, volume, area, magnitude of a vector quantity, etc
 - Vector: Physical quantities that require both magnitude and direction
 - Velocity, Acceleration, Force, Momentum
 - It does not make sense to say "I ran with velocity of 10miles/hour."
- Objects can be treated as point-like if their sizes are smaller than the scale in the problem
 - Earth can be treated as a point like object (or a particle)in celestial problems
 - Simplification of the problem (The first step in setting up to solve a problem...)
 - Any other examples?

Some More Fundamentals

- Motions:Can be described as long as the position is known at any given time (or position is expressed as a function of time)
 - Translation: Linear motion along a line
 - Rotation: Circular or elliptical motion
 - Vibration: Oscillation
- Dimensions
 - 0 dimension: A point
 - 1 dimension: Linear drag of a point, resulting in a line →
 Motion in one-dimension is a motion on a line
 - 2 dimension: Linear drag of a line resulting in a surface
 - 3 dimension: Perpendicular Linear drag of a surface, resulting in a stereo object

Displacement, Velocity and Speed

One dimensional displacement is defined as:

 $\Delta x \equiv x_f - x_i$

Displacement is the difference between initial and final positions of motion and is a vector quantity. How is this different than distance?

Average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$

Displacement per unit time in the period throughout the motion Average speed is defined as:

$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$$

Can someone tell me what the difference between speed and velocity is?

Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line as X-axis

Example 2.1

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from x_1 =50.0m to x_2 =30.5 m, as shown in the figure. What was the runner's average velocity? What was the average speed?

