PHYS 1443 — Section 002
Lecture #5

Wednesday, September 10, 2008
Dr. Mark Sosebee

¢ Free Fall

«  Coordinate System

«  Vectors and Scalars

o Motion in Two Dimensions
« Motion under constant acceleration
* Projectile Motion
e Maximum ranges and heights
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Announcements

 The first term exam Is to be next Wednesday, Sept. 17

— Will cover CH1 — what we finish today (likely to be CH3) +
Appendices A and B

— Mixture of multiple choices and essay problems
— Inclass, from 1 — 2:20pm, SH103
— Jason will conduct a review in the class Monday, Sept. 15

 There will be a department colloquium this afternoon
at 4pm in SH101

— Extra credit
— Be sure to sign in
— Refreshment at 3:30pm in SH108, the Physics Lounge!
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Phyvsics Department
The University of Texas at Arlington

COLLOOQUIUM

An Overview of Modeling at the Community
Coordinated MNModeling Center (COMOC) at
Goddard Space Flight Center

Center for Community Coordinated MWIo deling
MNASA Goddard Space Flicht C ey

Wednesday, September 10, 2008 at 400 pan i Rooimn 101 SE
Abhvstract

Part 1 - Maonetosphernic Modeling During prolonged intersrals of negative IMFEF Bz the
magnetosphere often enters a state 11 which gquasi-periodic, large-armplibnde oscillations of
energetic particle flusxes are observed at the gceosynchronous orbit e use the globhal
magnetosphere WMIHD code BATE-F-1T3 output during a long perniod of steads southward IWMEF
Bz to drive the Folk Ring Cuarrent IWlodel, %W s use a global magnetosphere WMIHD code that
reproduces Fast rmagnetotall recomnnechon rates observed 1in kinetic sirmalations. This results i
periodical loading-unloading cycles in the magnetotail even for steads southrsrard Bz and can
explain gquasi-periodic ascillations of gceosvynchronous energetic particle fluzxes, The total proton
energy within ceosynchronous orbit exxhibits owerall growth 1 tirme due to gquasi-steads
convwection and oscillates due to injection through inductive electric fields caused by maltiple

dipolarizations.

Patrt 2 - Helioszpheric Modeling & cone tmodel-based halo CME representation 15 inserted into the
commbined W3S (corona) and EMLIL theliosphere) models. "We studied the performance of the
cormbined rmodels by analyzing different halo CTME propagation and evolution to the L1 point
and comparing the result to ACE observations., We sitmualated CMEs related to a marmber of
ceomasnetic storms and events, including the sernes of the October 20053 Halloween Stormm
CMEs and the fall & GUT storim CRRME on Decermber, Z006. We introduced 4 patrameters
charactern=ing cone rmodel performance: CRE arrmiwval time, rmagnitude of impact, masnetopause
standoff distance, duration of the ewvent. We also describe real-tirme setup for the ERFNLIL cone
model to triggs Bioid ol - - Bioid - er.

Fefireshonents will e served in the Phiysics Lowunge at 330 pan




Coordinate Systems

« They make it easy and consistent to express locations or positions

« Two commonly used systems, depending on convenience, are
— Cartesian (Rectangular) Coordinate System
* Coordinates are expressed in (x,y)
— Polar Coordinate System
 Coordinates are expressed in distance from the origin ® and the angle measured
from the x-axis, 0 (r,0)

 Vectors become a lot easier to express and compute

s How are Cartesian and
____________________ Polar coordinates related?
Y1 (X,,y1)=(r,01)
: X = hCost _ \/(Xlz Fy2)
y, = [,Siné, tan g, - N
> -|-X X]_

0 (0,0) x:1
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Example

Cartesian Coordinate of a point in the xy plane are (x,y)= (-3.50,-2.50)m.
Find the equivalent polar coordinates of this point.

r :\/(x2+ y?)

' = J((-350)" +(-2.50)')
- J18.5 = 4.30(m)

) 6 =180 + 6,
tan @s = ﬂ — E
250 ~3.50 7

N
—

O = tan™! (gj = 35.5°

. 6=180+6, = 180" +35.5" =216

) PHYS1443-002-Fall 2008

Wednday, Sept. 10, 2008
Dr. Jaehoon Yu




Vector and Scalar

Vector quantities have both magnitudes (sizes)
and directions | Force, gravitational acceleration, momentum

Normally denoted in BOLD letters, &, or a letter with arrow on top q_:)

Their sizes or magnitudes are denoted with normal letters, &, or
absolute values: |7| or ||

Scalar quantities have magnitudes only | Energy, fea,

o : mass, time
Can be completely specified with a value
and its unit  Normally denoted in normal letters, &

Both have units!!!
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Properties of Vectors

« Two vectors are the same if their sizes and the directions
are the same, no matter where they are on a coordinate
system!!

Which ones are the

y
¢ D same vectors?
/ V A=B=E=D

A 3 /' Why aren’t the others?
" X C: The same magnitude

/ but opposite direction:
E C =-A:A negative vector

F: The same direction
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Vector Operations

« Addition:
— Triangular Method: One can add vectors by connecting the head of one vector to
the tail of the other (head-to-tail)
— Parallelogram method: Connect the tails of the two vectors and extend

— Addition is commutative: Changing order of operation does not affect the results
A+B=B+A, A+B+C+D+E=E+C+A+B+D

A
A+B
%B: B%B' OR g
A

y A+B

e Subtraction:
— The same as adding a negative vector:A- B = A + (-B)

A
<:1 -B Since subtraction is the equivalent to adding a
AR negative vector, subtraction is also commutative!!!
« Multiplication by a scalar is A
increasing the magnitude A, B=2A =——" B=2A -
Wednd |z | — ; &3 PHYS1443-002-Fall 2008 8
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Example for Vector Addition

A car travels 20.0km due north followed by 35.0km in a direction 60.0° west
of north. Find the magnitude and direction of resultant displacement.

r :\/(A+ Bcos¢9)2 +(Bsin 6?)2

= \/AZ + 82(0052 6 +sin’ 9)+ 2 AB cos 6

— A2+ B2+ 2AB cosd

= J(20.0)? +(35.0)? + 2x 20.0x 35.0 cos 60

N\ = /2325 = 48.2(km)
m Bsin 60 _
> 0 =tan ! J L Find other
‘A‘-F‘B‘COS 60 Ways to
_ gn 1 35.0sin 60 solve this
- 20.0 + 35.0 cos 60 problem...
=tan‘1ﬁ_389 to Wwrt N
37.5
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Components and Unit Vectors

Coordinate systems are useful in expressing vectors in their components

17 o
Ay ...................... E(Ax’Ay) A(z‘z‘cosﬁ
(_’+) : Ay _ ‘,_A\"sm 9| }Components
) | ¢9) ':A‘x - A= JAZ+A| } Magnitude

- . 2 _ 2
‘A‘:\/(‘A‘cose) + (‘A‘sin 0)
_ \/‘7\
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Unit Vectors

Unit vectors are the ones that tells us the
directions of the components

Dimensionless
Magnitudes are exactly 1
Unit vectors are usually expressed in i, |, k or

i, j k

So the vector A can
be re-written as

A=AT+A] = Wcos 07 + ‘K‘sin 0]
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Examples of Vector Operations

Find the resultant vector which is the sum of A=(2.0i+2.0j) and B =(2.0i-4.0j)

6:74+§:(2.0T+ 2.0])+(2.0?-4.0])
—(20+20)i +(20-40)] =400 —2.0j(m)

‘C‘ = \/(4.0)2+(—20)2 O— tan* C, _ 120 20 o
=\16+4.0=20=4.5() C, 40

Find the resultant displacement of three consecutive displacements:
d,=(15i+30j +12k)cm, d,=(23i+14j -5.0k)cm, and d,=(-13i+15j)cm

D = di+do+ds= (15?+30]+12E)+(23T+14]—5.0E)+(-13?+15])
— (15+23-13)i +(30+14+15) ] +(12—5.0)k =251 +59 ] +7.0k (cm)

Magnitude ‘5‘ = \/(25)2 +(59)2 +(7_0)2 =65(cm)
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Displacement, Velocity, and Acceleration in 2-dim

o Displacement:

 Average Velocity:

e |nstantaneous

Velocity:

* Average
Acceleration

Acceleration:

Wednday, Sept. 10, 2008

Ar =rys —r;
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How is each of
these quantities
defined in 1-D?

Q|

Instantaneous
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Kinematic Quantities in 1D and 2D

Quantities 1 Dimension 2 Dimension
Displacement | AX=X; —X; AT = Ff — Fi
Average Velocity Vﬁi—)t(:):::i ;Eif:i: :zi
Inst. Velocity | vy = gimoi—f - 3—1( V= lii“oi_[ = (Z—tr
Average Acc. | == | a= % - Vt: :Z |
T e o
Wednday, S‘ What is the difference between 1D and 2D quantities? 14
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2-dim Motion Under Constant Acceleration
o Position vectors in x-y plane:

— = = —

=X +Y) rf:XfT+yfT

 Velocity vectors in x-y plane:

-

Vi= v +v,] V=

- =

+ Vi ]

I xf

Velocity vectors in terms of the acceleration vector

‘X-comp‘VXf =V, +a,l ‘Y-comp‘ Vg = Vi T ayt

Ve = (v +at)i +(v,; +at)j = (vxiT+vyiT)+(aXT+ayT)t =
=V, +at

Wednday, Sept. 10, 2008
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2-dim Motion Under Constant Acceleration

« How are the 2D position vectors written in
acceleration vectors?

— 1 1
Position vector X, =X +V . t+=at’ Y, =Y, +Vyit+—ayt2
components 2 2

F) — i 1 =
Putting them r = Xl Y
together in a B 1_ . 1 o
vector form —(xi+vxit+§axt j (y,+v t+2at )]
- i - i 1 - i 2

Regrouping =(Xil + yij)+(vxi| +Vyij) t+§(axl +ayj) t
the above

— — 1 —, 2
=r +Vl +—at 2D problems can be
2 Interpreted as two 1D

) PHvs1443-002-Fall 2008 problems inxandy |4
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Example for 2-D Kinematic Equations

A particle starts at origin when t=0 with an initial velocity v=(20i-15j)m/s.
The particle moves in the xy plane with a =4.0m/s*. Determine the

components of the velocity vector at any time t.

Vi =V t+at=20+4.0t(m/s) Vv, =V, +at=-15+0t =-15(m/s)

Velocity vector | V(t)=v,(t)i +v,(t)j=(20+4.0t)i —15](m/s)

Compute the velocity and the speed of the particle at t=5.0 s.

—

Vi_

speed = M = \/(VX)Z +(v,) = \/(40)2 +(-15)" =43m/s

s =V, sl TV, 5] =(20+4.0x5.0)7-15]=(407 -15]) m/s
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Example for 2-D Kinematic Eq. Cnt'd

Vv _ _
Angle. of the 6 =tan™ [yj = tan 2 (E) — tan™® (—SJ =21°
Velocity vector v 40 3

X

Determine the x.and y components of the particle at t=5.0 s.

Xe = int+%axt2 220X5+%X4X52 = 150(m)

Ve = Vit = —15x5=—75 (M)

Can you write down the position vector at t=5.0s?

re=X.1+y, ] =150i =75j(m)
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Projectile Motion

A 2-dim motion of an object under
the gravitational acceleration with
the following assumptions

— Free fall acceleration, g, Is constant
over the range of the motion
+ §=-9.8](m/s?)
— Air resistance and other effects are
negligible

A motion under constant
acceleration!!!! =» Superposition
of two motions

— Horizontal motion with constant
velocity ( no acceleration )

— Vertical motion under constant

acceleration (g)
Wednday, Sept. 10, 2008 fe3  PHYS1443-002-Fall 2008
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Show that a projectile motion is a parabola!!!

y

! : L
a=aji+a,j=—-0]

Xx-component in = Vi COS 91 y-component V = Vi Sin Hi

X

a,=0 X; = v,t=v.cos@dt |l =
V. cos 6.

In a projectile motion,
the only acceleration is
gravitational one whose
direction is always
toward the center of the
earth (downward).

1 B : 1
Y, :Vyit+5(_g) t? =V, sin Qit—Egt

Plug t into y, = v.sine( X j_lg[ X

T

VVL T T & VUV

the above v,cosd, ) 2 V;co80
y, =X, tan 6, — o J > sz What kind of parabola is this?
2V, cos “ 0,
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Projectile Motion

v, = 0 at this point

y
v _,__-u
Vy A &7 h
J”ﬁ

The only acceleration in this
motion. It is a constant!!




Example for Projectile Motion

A ball is thrown with an initial velocity v=(20i+40j)m/s. Estimate the time of
flight and the distance the ball is from the original position when landed.

Which component determines the flight time and the distance?

y; =40t Jr%(—g)t2 =0m
t(80—gt)=0

So the possible solutions are...

Flight time is determined
by the y component,
because the ball stops
moving when it is on the
ground after the flight,

.'.t:Oort:@zSSec

9
-t ~8sec Why isn't 0
the solution?

X; =Vt =20x8=160(m)
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Distance is determined by the x

component in 2-dim, because
the ball is at y=0 position when it

completed it's flight.

Wednday, Sept. 10, 2008



