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• Conservation of Momentum



Energy Diagram and the Equilibrium of a System
One can draw potential energy as a function of position Energy Diagram

=ULet’s consider potential energy of a spring-ball system 21 kxsU
A ParabolaWhat shape is this diagram? 

U Wh t d  thi   di  t ll ?

2
kx

Us
2

2
1 kxU =

What does this energy diagram tell you?

1. Potential energy for this system is the same 
independent of the sign of the position.  Minimum

Stable 

x-xm xm

independent of the sign of the position.  
2. The force is 0 when the slope of the potential 

energy curve is 0 at the position.
3 x=0 is the stable equilibrium position of this 

Stable 
equilibrium 

Maximum 3. x=0 is the stable equilibrium position of this 
system where the potential energy is minimum.

Position of a stable equilibrium corresponds to points where potential energy is at a minimum.

unstable 
equilibrium 
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Position of an unstable equilibrium corresponds to points where potential energy is a maximum. 



General Energy Conservation and 
Mass-Energy EquivalenceMass Energy Equivalence

General Principle of 
Energy Conservation

The total energy of an isolated system is conserved as 
long as all forms of energy are taken into account.

Friction is a non-conservative force and causes mechanical 
energy to change to other forms of energy.What about friction?

H  if  dd h   f  f  l h  h     However, if you add the new forms of energy altogether, the system as a 
whole did not lose any energy, as long as it is self-contained or isolated.

In the grand scale of the universe  no energy can be destroyed or created but just In the grand scale of the universe, no energy can be destroyed or created but just 
transformed or transferred from one to another.  The total energy of universe is 
constant as a function of time!!   The total energy of the universe is conserved!

Principle of 
Conservation of Mass

Einstein’s Mass-

In any physical or chemical process, mass is neither created nor destroyed.   
Mass before a process is identical to the mass after the process.

l d b d d2
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Einstein s Mass
Energy equality. RE = How many joules does your body correspond to?2mc



The Gravitational Field
fTh  it ti l f  i   fi ld f The force exists everywhere in the universe.The gravitational force is a field force.

If one were to place a test object of mass m at any point in the 
space in the existence of another object of mass M  the test object space in the existence of another object of mass M, the test object 
will feel the gravitational force exerted by M,                 .gF mg=

r r

Therefore the gravitational field g is defined as gr gF
r

In other words, the gravitational field at a point in the space is the gravitational force 
experienced by a test particle placed at the point divided by the mass of the test particle.

Therefore the gravitational field g is defined as g ≡ g

m

So how does the Earth’s 
gravitational field look like?

gr Where      is the unit vector pointing 
outward from the center of the Earth

r̂gF
m

=

r
r

R
GM

E

E ˆ
2−=

E
Far away from the 
Earth’s surface

Close to the 
Earth’s surface
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The Gravitational Potential Energy
Wh t i  th  t ti l  f  bj t t th  What is the potential energy of an object at the 
height y from the surface of the Earth?

No  it would not  

U
Do you think this would work in general cases?

mgy=
No, it would not. Do you think this would work in general cases?

Why not? Because this formula is only valid for the case where the gravitational force 
is constant, near the surface of the Earth, and the generalized gravitational 
force is inversely proportional to the square of the distance.

OK. Then how would we generalize the potential energy in the gravitational field?
Since the gravitational force is a central force, and a 
central force is a conservative force, the work done by 
the gravitational force is independent of the path.

m

m

r

Fg

The path can be considered as consisting of 
many tangential and radial motions.   
Tangential motions do not contribute to work!!!

RE

mri

Fg

rf

Wednesday, Oct. 29, 2008 PHYS 1443-002, Fall 2008
Dr. Jaehoon Yu

5



More on The Gravitational Potential Energy
Si  th  it ti l f  i   di l f  it f  k l  h  th  th Since the gravitational force is a radial force, it performs work only when the path 
has component in radial direction. Therefore, the work performed by the gravitational 
force that depends on the position becomes:

Potential energy is the negative change 

dW F dr= ⋅
r r ( )drrF= W ( )∫= f

i

r

r
drrF

( )∫
fr

For the whole path

Potential energy is the negative change 
of the work done through the path U∆

Since the Earth’s gravitational force is ( )F r =

if UU −= ( )∫−= f

ir
drrF

2
EGM m

r
−

Thus the potential energy 
function becomes if UU −

S ff f

∫= f

i

r

r
E dr

r
mGM

2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−=

if
E rr
mGM 11

r

Since only the difference of potential energy matters, by taking the 
infinite distance as the initial point of the potential energy, we obtain U =

For any two U
The energy needed For many  U =

EGM m
r

−

1 2Gm m U∑
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y
particles? U = to take the particles 

infinitely apart.

For many  
particles?

U =1 2

r
− ,

,
i j

i j
U∑



Example of Gravitational Potential Energy
A particle of mass m is displaced through a small vertical distance ∆y near the Earth’s A particle of mass m is displaced through a small vertical distance ∆y near the Earth s 
surface.  Show that in this situation the general expression for the change in gravitational 
potential energy is reduced to the ∆U=-mg∆y.

⎛ ⎞Taking the general expression of 
gravitational potential energy U∆ EGM m= −

( )

1 1

f ir r
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

Si  th  it ti  i  l  t  

( )
if

if
E rr

rr
mGM

−
−=

if
E rr

ymGM ∆
−=Reorganizing the terms w/ 

the common denominator

Since the situation is close to 
the surface of the Earth i Er R≈

Therefore  ∆U becomes U∆ =

f Er R≈and

EGM m−
2

y∆
Therefore, ∆U becomes

Since on the surface of the 
Earth the gravitational field is 

g = The potential 
energy becomes ymgU ∆−=∆

E 2
ER

2
E

E

GM
R
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Earth the gravitational field is energy becomes ER



Escape Speed
Consider an object of mass m is projected vertically from the surface of 

vf=0 at h=rmax

Consider an object of mass m is projected vertically from the surface of 
the Earth with an initial speed vi and eventually comes to stop vf=0 at 
the distance rmax.

m

h
v GM1 GM

ME

Solving the above equation 

Since the total mechanical 
energy is conserved

RE ME

vi

UK +=
E

E
i R

mGMmv −= 2

2
1

maxr
mGM E−=

⎞
⎜
⎛ 11g

for vi, one obtains

Therefore if the initial speed vi is known, one can use 
thi  f l  t  t  th  fi l h i ht h f th  bj t h

iv ⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max

112
rR

GM
E

E

Rr Ei Rv 22

this formula to compute the final height h of the object.

In order for an object to escape 
Earth’s gravitational field completely  

h

escv

ERr −= max
EiE

Ei

RvGM 22 −
=

E

R
GM2

=
6

2411

10376
1098.51067.62 ××××

=
−

Earth s gravitational field completely, 
the initial speed needs to be

esc

This is called the escape speed.  This formula is How does this depend Independent of 

ER 61037.6 ×

skmsm /2.11/1012.1 4 =×=
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p p
valid for any planet or large mass objects.  

p
on the mass of the 
escaping object?

p
the mass of the 
escaping object



Power
• Rate at which the work is done or the energy is transferred• Rate at which the work is done or the energy is transferred

– What is the difference for the same car with two different engines (4 
cylinder and 8 cylinder) climbing the same hill? 

– The time…  8 cylinder car climbs up the hill faster!
Is the total amount of work done by the engines different? NO
Then what is different? The rate at which the same amount of work Then what is different? e a e a c e sa e a ou o o

performed is higher for 8 cylinders than 4.

Average power P ≡
W∆    g p P ≡

P ≡Instantaneous power 0
lim

t

W
t∆ →

∆
=

∆
( )

0
lim

t

sF
t∆ →

∆
⋅ =
∆∑

∑

dW
dt

= ( )F v⋅ =∑
t∆

Unit? /J s= 1 746HP Watts≡
What do power companies sell? 1kWH =

cosF v θ∑

61000 3600 3.6 10Watts s J× = ×

Watts
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p p

Energy 
kW 000 3600 3.6 0Watts s J



Energy Loss in Automobile
A bil   l  13% f i  f l  l h  hi l   Automobile uses only 13% of its fuel to propel the vehicle.  

Why? 16% in friction in mechanical parts67% in the engine: 
I l t  b i

y
4% in operating other crucial parts 
such as oil and fuel pumps, etc

• Incomplete burning
• Heat 
• Sound

13% used for balancing energy loss related to moving vehicle, like air 
resistance and road friction to tire, etc

Two frictional forces involved in moving vehicles 1450carm kg=

Coefficient of Rolling Friction; µ=0.016
1

Weight =
227n mg Nµ µ= =

14200mg N=

f f1

P =

Air Drag tf =21
2af D Avρ= = Total Resistance

Total power to keep speed v=26.8m/s=60mi/h

h f P =
tf v = ( )691 26.8 18.5N kW⋅ =
f v =( )227 26 8 6 08kW

rf + af2 21 0.5 1.293 2 0.647
2

v v× × × =
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Power to overcome each component of resistance rP =

( ) kWvfP aa 5.128.267.464 =⋅==
rf v =( )227 26.8 6.08kW⋅ =



Linear Momentum
The principle of energy conservation can be used to solve problems The principle of energy conservation can be used to solve problems 
that are harder to solve just using Newton’s laws.   It is used to 
describe motion of an object or a system of objects.
A new concept of linear momentum can also be used to solve physical problems, 
especially the problems involving collisions of objects.
Li  t  f  bj t h   i   

p ≡
Linear momentum of an object whose mass is m 
and is moving at a velocity of v is defined as 

1 M t  i  a t r q a tit

mv

What can you tell from this 
definition about momentum?

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s 

What else can use see from the 
definition?  Do you see force?

The change of momentum in a given time interval

p∆ mv mv ( )m v v v∆
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f y f p
t

∆
=

∆
0mv mv

t
−

=
∆

( )0m v v
t
−

=
∆

vm
t

∆
=

∆
F∑ma =



Linear Momentum and Forces
What can we learn from this Force-momentum 
relationship?F =∑ dp

dt
• The rate of the change of particle’s momentum is the same as 

the net force exerted on it.
• When net force is 0, the particle’s linear momentum is When net force is 0, the particle s linear momentum is 

constant as a function of time.
• If a particle is isolated, the particle experiences no net force. 

Therefore its momentum does not change and is conserved
Something else we can do 
with this relationship.  What 

The relationship can be used to study 
the case where the mass changes as a 

Therefore its momentum does not change and is conserved.

p
do you think it is? function of time.

Can you think of a 
dpF
dt

=∑ ( )d mv
dt

= dm v
dt

=
dvm
dt

+
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Can you think of a 
few cases like this?

Motion of a meteorite Motion of a rocket 

dt∑ dt dt dt



Conservation of Linear Momentum in a Two 
Particle SystemParticle System

Consider an isolated system with two particles that do not have any 
external forces exerting on it.    What is the impact of Newton’s 3rd Law?g p

If particle#1 exerts force on particle #2, there must be another force that 
the particle #2 exerts on #1 as the reaction force.   Both the forces are 
i l f  d h   f  i  h  i  SYSTEM i  ill 0  

Now how would the momenta 
of these particles look like?

internal forces, and the net force in the entire SYSTEM is still 0. 
Let say that the particle #1 has momentum 
p1 and #2 has p2 at some point of time.

Using momentum-
force relationship

1
21

dpF
dt

= and 2
12

dpF
dt

=

And since net force 
of this system is 0

F∑ 12 21F F= + 2 1dp dp
dt dt

= + ( )2 1
d p p
dt

= + 0=
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2 1p p const+ =Therefore The total linear momentum of the system is conserved!!!



Linear Momentum Conservation
Initial

1 2i ip p+ = 1 1 2 2m v m v+

Final

1 2f fp p+ = 1 1 2 2m v m v′ ′+

Final
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More on Conservation of Linear Momentum in 
a Two Body Systema Two Body System

p =∑
From the previous slide we’ve learned that the total 
momentum of the system is conserved if no external 
f   d  h  2 1p p+ =const

What does this mean? As in the case of energy conservation, this means 
that the total vector sum of all momenta in the 

∑
forces are exerted on the system.

f
system is the same before and after any interactions

Mathematically this statement can be written as 2 1i ip p+ = 2 1f fp p+

∑∑ =
system

xf
system

xi PP ∑∑ =
system

yf
system

yi PP ∑∑ =
system

zf
system

zi PP

f f

Whenever two or more particles in an 
isolated system interact, the total 
momentum of the system remains constant

This can be generalized into 
conservation of linear momentum in 
many particle systems
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momentum of the system remains constant.many particle systems.



Example for Linear Momentum Conservation
Estimate an astronaut’s (M=70kg) resulting velocity after he throws his book Estimate an astronaut s (M=70kg) resulting velocity after he throws his book 
(m=1kg) to a direction in the space to move to another direction.

From momentum conservation  we can writevA v

ip
From momentum conservation, we can writevA vB

A BA Bm v m v= +0= fp=

Assuming the astronaut’s mass is 70kg, and the book’s 
mass is 1kg and using linear momentum conservation

Av =
BB

A

m v
m

− =
1

7 0
v− B

Now if the book gained a velocity 
of 20 m/s in +x-direction, the 
Astronaut’s velocity is

Av = ( )1 20
70

i− = ( )0.3  /i m s−
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Astronaut s velocity is



Impulse and Linear Momentum 
d

B  i t ti  th  b  

dpF
dt

=Net force causes change of momentum 
Newton’s second law dp Fdt=

By integrating the above 
equation in a time interval ti to 
tf, one can obtain impulse I.

f

i

t

t
dp =∫ f ip p− = p∆ = f

i

t

t
Fdt =∫ I

Effect of the force F acting on an object over the time 
interval ∆t=tf-ti is equal to the change of the momentum of 
the object caused by that force.   Impulse is the degree of 

So what do you 
think an impulse is?

the object caused by that force.   Impulse is the degree of 
which an external force changes an object’s momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.  

What are the 
dimension and 
unit of Impulse?  
What is the 
direction of an 

Defining a time-averaged force 

1
iF F t

t
≡ ∆
∆ ∑

Impulse can be rewritten 

I F t≡ ∆

If force is constant  

I F t≡ ∆
Wednesday, Oct. 29, 2008 PHYS 1443-002, Fall 2008 Dr. Jaehoon 
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direction of an 
impulse vector? 

it∆ I F t∆
It is generally assumed that the impulse force acts on a 
short time but much greater than any other forces present.



Example for Impulse
(a) Calculate the impulse experienced when a 70 kg person lands on firm ground 

ft  j i  f   h i ht f 3 0   Th  ti t  th   f  t d  after jumping from a height of 3.0 m.  Then estimate the average force exerted on 
the person’s feet by the ground, if the landing is (b) stiff-legged and (c) with bent 
legs. In the former case, assume the body moves 1.0cm during the impact, and in 
the second case  when the legs are bent  about 50 cmthe second case, when the legs are bent, about 50 cm.

We don’t know the force.   How do we do this?
Obtain velocity of the person before striking the ground.Obtain velocity of the person before striking the ground.

KE = 21
2

mv = ( )img y y− − = imgy

Solving the above for velocity v, we obtain

PE−∆

v = 2 igy = 2 9.8 3 7.7 /m s⋅ ⋅ =

Then as the person strikes the ground, the 
 b  0 i kl  i i  h  i lmomentum becomes 0 quickly giving the impulse

I F t= ∆ = p∆ = f ip p− = 0 mv− =
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70 7.7 / 540kg m s j jN s= − ⋅ = − ⋅



Example cont’d
In coming to rest, the body decelerates from 7.7m/s to 0m/s in a distance d=1.0cm=0.01m. 

The average speed during this period is v = 0
2

iv+
=

7.7 3.8 /
2

m s=

d 0 01mThe time period the collision lasts is t∆ =
d
v
= 30.01 2.6 10

3.8 /
m s

m s
−= ×

Since the magnitude of impulse is I F t= ∆ = 540N s⋅

The average force on the feet during 
this landing is

F =
I
t
=

∆
5

3

540 2.1 10
2.6 10

N− = ×
×

H  l  i  thi   f ? 2 270 9 8 / 6 9 10W i ht k NHow large is this average force? 2 270 9.8 / 6.9 10Weight kg m s N= ⋅ = ×
5 22.1 10 304 6.9 10F N N= × = × × = 304 Weight×

If landed in stiff legged, the feet must sustain 300 times the body weight.  The person will 
likely break his leg.
For bent legged landing: t∆ =

d
v
= 0.50 0.13

3.8 /
m s

m s
=

540
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F = 3540 4.1 10 5.9
0.13

N Weight= × =



Another Example for Impulse
In a crash test  an automobile of mass 1500kg collides with a wall   The initial and In a crash test, an automobile of mass 1500kg collides with a wall.  The initial and 
final velocities of the automobile are vi= -15.0i m/s and vf=2.60i m/s.  If the collision 
lasts for 0.150 seconds, what would be the impulse caused by the collision and the 
average force exerted on the automobile?average force exerted on the automobile?

Let’s assume that the force involved in the collision is a lot larger than any other 
forces in the system during the collision.   From the problem, the initial and final 

t  f th  t bil  b f  d ft  th  lli i  i  

ip
momentum of the automobile before and after the collision is 

imv= ( )1500 15.0 22500  /i i kg m s= × − = − ⋅

Therefore the impulse on the 
t bil  d  t  th  lli i   i

I

fp fmv= ( )1500 2.60 3900  /i i kg m s= × = ⋅

p= ∆ f ip p= − ( )3900 22500  /i kg m s= + ⋅

automobile due to the collision  is

The average force exerted on the 
t bil  d i  th  lli i   i

F

426400  / 2.64 10  /i kg m s i kg m s= ⋅ = × ⋅

p
t

∆
=

∆

42 .6 4 1 0
0 .1 5 0

i×
=
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automobile during the collision  is t∆ 0 .1 5 0
5 2 51.76 10  / 1.76 10  Ni kg m s i= × ⋅ = ×



Collisions 
G li d lli i     l  h  h i l  b  l  h  lli i  

Consider a case of a collision The collisions of these ions never involve 

Generalized collisions must cover not only the physical contact but also the collisions 
without physical contact such as that of electromagnetic ones in a microscopic scale.

Consider a case of a collision 
between a proton on a helium ion. 

f
physical contact because the electromagnetic 
repulsive force between these two become great 
as they get closer causing a collision.F y g g

1 21dp F dt=t

F F12 Assuming no external forces, the force 
exerted on particle 1 by particle 2, F21, 
changes the momentum of particle 1 by  

F21

changes the momentum of particle 1 by  

Likewise for particle 2 by particle 1  
2 12dp F dt=

Using Newton’s 3rd law we obtain   

So the momentum change of the system in the 

2dp

d p
12F dt= 21F dt=− 1dp=−

1 2d p d p= + 0=
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collision is 0, and the momentum is conserved
systemp 1 2p p= + constant=



Elastic and Inelastic Collisions 
M  i  d i   lli i   l   l f   li ibl

Collisions are classified as elastic or inelastic based on whether the kinetic energy 
is conserved  meaning whether it is the same before and after the collision

Momentum is conserved in any collisions as long as external forces are negligible.

is conserved, meaning whether it is the same before and after the collision.

A collision in which the total kinetic energy and momentum 
are the same before and after the collision.  

Elastic 
Collision

T  t  f i l ti  lli i P f tl  i l ti  d i l ti   

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision, but momentum is.

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision, 
moving together at a certain velocitymoving together at a certain velocity.
Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

N t  M t  i  t t i  ll lli i  b t ki ti   i  l  i  l ti  lli i   
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Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  



Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 

1 21 2i im v m v+ 1 2( ) fm m v= +

1 21 2i im v m v+Momentum is conse ved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions? 1 21 2i im v m v+

1 2

1 2( )
fv

m m
=

+

1 21 2f fmv m v= +

In elastic collisions, both the 
momentum and the kinetic energy 

( )

2
22

2
11 2

1
2
1

ii vmvm + 2
22

2
11 2

1
2
1

ff vmvm +=

( )are conserved. Therefore, the 
final speeds in an elastic collision 
can be obtained in terms of initial 

( )2
1

2
11 fi vvm −

( ) ( )

( )2
2

2
22 fi vvm −=

( )( )fifi vvvvm 11111 +− ( )( )fifi vvvvm 22222 +−=

F  t  can be obtained in terms of initial 
speeds as ( ) ( )fifi vvmvvm 222111 −=−

vmvmmv 221 2 ⎞
⎜⎜
⎛

+
⎞

⎜⎜
⎛ −

=

From momentum 
conservation above

vmmvmv 2112 ⎞
⎜⎜
⎛ −

+
⎞

⎜⎜
⎛

=
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iif v
mm

v
mm

v 2
21

1
21

1
⎠

⎜⎜
⎝ +

+
⎠

⎜⎜
⎝ +

= iif v
mm

v
mm

v 2
21

1
21

2
⎠

⎜⎜
⎝ +

+
⎠

⎜⎜
⎝ +

=

What happens when the two masses are the same?



Example for Collisions
A car of mass 1800kg stopped  at a traffic light is rear ended by a 900kg car  and the A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and the 
two become entangled.  If the lighter car was moving at 20.0m/s before the collision 
what is the velocity of the entangled cars after the collision?

Th  t  b f  d ft  th  lli i  

ip
The momenta before and after the collision are

20.0m/s

m2

Before collision

1 21 2i im v m v= + 220 im v= +

m1

/

Since momentum of the system must be conserved
After collision

fp 1 21 2f fm v m v= + ( )1 2 fm m v= +

vf
m1

m2 i fp p= ( )1 2 fm m v+ 22 im v=

22 im v 900 20.0 6 6 /i×

What can we learn from these equations 
on the direction and magnitude of the 

f

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 

fv ( )
2

1 2m m
=

+
900 20.0 6.67  /
900 1800

i i m s= =
+
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on the direction and magnitude of the 
velocity before and after the collision?

car s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.


