PHYS 1443 — Section 002
Lecture #16

Wednesday, Nov. 5, 2008
Dr. Jae Yu

« Collisions - Elastic and Inelastic Collisions
«  Two Dimensional Collisions

e  Center of Mass

« Fundamentals of Rotational Motions
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Announcements

Quiz next Monday, Nov. 10

— Beginning of the class
— CoversCH9

Mid-term grade discussions
— If you haven’t done it, please do so today after the class in my
office, CPB342
Third term exam
— 1-2:20pm, Wednesday, Nov. 19, in SH103
— Covers CH 9 — What we complete next Wednesday, Nov. 12
— Jason will do a summary session on Monday, Nov. 17

Tea time with Dr. Durrance, a former astronaut, in SH108 at
3pm this afternoon

g JPHYS 1441-001, Summer 2008 2
Dr. Jaehoon Yu

Wednesday, Nov. 5, 2008




Extra-Credit Special Project

* Derive the formula for the final velocity of two objects
which underwent an elastic collision as a function of
known quantities m,, m,, vy, and v, in page 6 of this
lecture note. Must be done In far greater detail than
what is covered in the lecture note.

— 20 points extra credit

 Describe In detaill what happens to the final velocities
if m;=m.,.
— 5 point extra credit

 Due: Start of the class next Wednesday, Nov. 12
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Collisions

Generalized collisions must cover not only the physical contact but also the collisions
without physical contact such as that of electromagnetic ones in a microscopic scale.

Consider a case of a collision
between a proton on a helium ion.

The collisions of these ions never involve
physical contact because the electromagnetic
repulsive force between these two become great

as they get closer causing a collision.

q;vA
F
2 Assuming no external forces, the force =
object 2 exerted on object 1 by, F,, dp, =F dt‘
> f / 21
changes the momentum of object 1 by
F — . ; =
2 Likewise for object 2 by object 1 dﬁz =F,dt
Using Newton's 3" law we obtain df))2 — ﬁlzdt :_|321dt :—dﬁl
So the momentum change of the system in the dp=dp,+dp, =
collision is 0, and the momentu s conserved Poen = P+ P, = constant
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Elastic and Inelastic Collisions

Momentum is conserved in any collisions as long as external forces are negligible.

Collisions are classified as elastic or inelastic based on whether the Kinetic energy
is conserved, meaning whether it is the same before and after the collision.

Elastic
Collision

Inelastic
Collision

A collision in which the total Rinetic energy and momentum
are the same before and after the collision.

A collision in which the total Rinetic energy is not the same
before and after the collision, but momentum is.

Two types of inelastic collisions:Perfectly inelastic and inelastic

Perfectly Inelastic: Two objects stick together after the collision,

moving together at a certain velocity.
Inelastic: Colliding objects do not stick together after the collision but

some Rinetic enerygy is lost.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.
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Elastic and Perfectly Inelastic Collisions

In perfectly Inelastic collisions, the objects stick, . . .
. , m Vi +M,V2i =(m, +m,)vi
together after the collision, moving together.
Momentum is conserved in this collision, so the v = MiVai +M,Va
final velocity of the stuck system is (m, +m,)

How about elastic collisions? M Vi +M,Vai =M Vit +M,Var

1 -, 1 . 1 , 1
—myvy; + E m,Vy, = E mV; + E M,V

In an elastic collision, both the
momentum and the Rinetic enerygy

are conserved. Therefore, the m, (V2 —vZ ) = m,(vZ —vZ,)

final speeds in an elastic collision m, (v = vy vy + vy ) = My (v =y vy + vy )
can be obtained in terms of initial T —————— | - |
. M Vy — Vi J= MLV — Vs
speeds as conservation ab0\> |
ml—mz\ 2m, ) 2m, ) ml—mz\
Vig = Vg + Voil Var = Vi + Vyi
m,+m, ) m,+m, ) m,+m, ) m,+m, )
i
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Example for Collisions

A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and the
two become entangled. If the lighter car was moving at 20.0m/s before the collision
what is the velocity of the entangled cars after the collision?

Before collision The momenta before and after the collision are
& " g P, =M Vi + M,V2i =0+m,Vy;
@ 20.0m/s _ _
i o pf :m1V1f+m2V2f :(m1+m2)vf
After collision _
& Since momentum of the system must be conserved
=B ) (m+m)i =mis
- m G i i .
v V2l 900x20.0i oz

) (m,+m,)  900+1800

What can we learn from these equations  The cars are moving in the same direction as the lighter
on the direction and magnitude of the car’s original direction to conserve momentum.

velocity before and after the collision? The magnitude is inversely proportional to its own mass.
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Two dimensional Collisions

In two dimension, one needs to use components of momentum and
apply momentum conservation to solve physical problems.

And for the elastic collisions, the

Rinetic energy is conserved:
Wednesday, Nov. 5, 2008

What do you think
1 2 1 2 1 2
—MV: =MV + M,V we can learn from
2 2 2 these relationships?
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M, Vi + M, Vi = M;Vis + M, Vot
X-comp. My Vi + MyVoi = MV + MYV, g

Consider a system of two particle collisions and scatters in
two dimension as shown in the picture. (This is the case at

fixed target accelerator experiments.) The momentum
conservation tells us:

M, Vi + M, Vai =M, Vi
MV, =MV MV, =MV, Cosd + M,V COs¢

MV, = 0 =MV, +MVye =MV, SING—M,V, Sing
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Example for Two Dimensional Collisions

Proton #1 with a speed 3.50x10° m/s collides elastically with proton #2 initially at
rest. After the collision, proton #1 moves at an angle of 37° to the horizontal axis and
proton #2 deflects at an angle ¢ to the same axis. Find the final speeds of the two

protons and the scattering angle of proton #2, ¢.

~ Yo Since both the particles are protons m;=m,=m.,.
(m,) Using momentum conservation, one obtains
V4§ x-comp. MV, =M Vv, COS & +m v, COS ¢
,,»@/\é y-comp. MV Sin@—m v, sing =0
e T
h \j ¢ Canceling m; and putting in all known guantities, one obtains
@p\. V,; C0S37°+V,, cos¢ =3.50x10° (1)
54
From kinetic energy V,; SIN37° =V, Sing (2)
conservation: v, =2.80x10°m /s

, Solving Egs. 1-3 ; Do this at
3.50x10°f =vZ +vZ, (3) equations, one gets Vo = 2.11x10°m/s [home@
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Center of Mass

We've been solving physical problems treating objects as sizeless
points with masses, but in realistic situations objects have shapes
with masses distributed throughout the body.

Center of mass of a system is the average position of the system’s mass and
represents the motion of the system as if all the mass is on the point.

The total external force exerted on the system of
total mass M causes the center of mass to move at
an acceleration given by a = > F /M as if all
the mass of the system is concentrated on the

What does above statement
tell you concerning the
forces being exerted on the

system? center of mass.

@ Consider a massless rod with two balls attached at either end.

X, ‘ The position of the cen'te.r of mass of this system is

% the mass averaged position of the system
" m,X,+m,X, | CMis closer to the
Xem = : :
m, +m, heavier object
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Motion of a Diver and the Center of Mass

Diver performs a simple dive.
The motion of the center of mass
follows a parabola since it is a
projectile motion.

Diver performs a complicated dive.
The motion of the center of mass
still follows the same parabola since
It still is a projectile motion.

The motion of the center of mass
of the diver Is always the same.




Example 9 -14

Thee people of roughly equivalent mass M on a lightweight (air-filled)
banana boat sit along the x axis at positions X,=1.0m, X,=5.0m, and
X,=6.0m. Find the position of CM.

Using the formula
for CM

M
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Example for Center of Mass in 2-D

A system consists of three particles as shown in the figure. Find the
position of the center of mass of this system.

Using the formula for CM for each
=29 @ position vector component
)75 Z m; X; Z m;y;
' : X = i — i
ik CM Z m, Yem Z m.
>—0 L . L (mg+2m)i+2m]
=1 =2 Oneobtains 7, =Xy 1+ j:(mZ m,) i+2m )
M +m, +Mm
. Zmixi LMY +MyX, +MyX, M, +2m,
CM™ N'm,  mmymg mm,+m, If m, =2kg;m, =m, =1kg
_ Zi:miyi _ my, +M,y, + My, _ 2m, FCM — 3+ 4J — O 75_|)_|_]
Yewm Sm m, +m, +m, m, +m, +m, 4 '
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Center of Mass of a Rigid Object

The formula for CM can be extended to a system of many particles
or a Rigid Object

Xem

m +m, +---+m

m: X.
MM, e+ M X, _Z 1

2m

Zijmiyi

Yom = Zmi

Zmizi

Zem = Zmi
i

The position vector of the
center of mass of a many
particle systemis

A 4
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rCM:XCMi+yCM j+ZCMk:

—

Ncwm

Z miFi
i

M

—

Smx iy my i+ mzk

—

Arigid body — an object with shape
and size with mass spread throughout
the body, ordinary objects — can be
considered as a group of particles with
mass m_ densely spread throughout
the given shape of the object
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2m
> Am;x,
Xem = i M
> Am;x,
X = i i = —
cM AL!irllo Y jxdm
Fcm =—jrdm
14
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Example of Center of Mass; Rigid Bod

Show that the center of mass of a rod of mass 9 and length £ lies in midway
between its ends, assuming the rod has a uniform mass per unit length.

4 r The formula for CM of a continuous object is

) ; 1 x=L
—#— e = VLO xam
) y 1 i Since the density of the rod (A) is constant; A =M /L

dm=)dx  The mass of a small segment dm= Adx

x=L
X= 1
Therefore  Xep, :ﬁjx;ﬂxdx:i[}ﬂxz} =—( /1L2\ (2 |\/||_\ _E

M2 |, ) M ) 2
Find the CM when the density of the rod non-uniform but varies linearly as a function of x, A=a. X
Adx = | oaxdx x= x= x=t
-[ j— Xey = 1 L/1xdx = L L05X2dX = L i05X3
x=L M Jx=0 M Jx=0 M |3 _
= [iaxz} = lozL2 -
2 oo 2 Xen, :illal_e,) ZL(EMLJ _2L
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Center of Mass and Center of Grawty

The center of mass of any symmetric object lies on the .
axis of symmetry and on any plane of symmetry, if the

object’s mass is evenly distributed throughout the body. > Axis of
One can use gravity to locate CM. * symmetry

l; otw dq yotjhthgll\]y%ut; anr g Hang the object by one point and draw a vertical line
ciommine e L oL following a plum-bob.

objects that are not _ _
symmetric? 2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM.

Since a rigid object can be considered as a collection
of small masses, one can see the total gravitational
force exerted on the object as

Eg =ZE;=ZAmi§=M§

Center of Gravity

Amg What does this The ne.t eﬁegt of these small grawtatlongl
. I " forces is equivalent to a single force acting on
equation tell you: a point (Center of Gravity) with mass M.

The CoG is the point in an object as if all the gravitational force is acting on!




Motion of a Group of Particles

We've learned that the CM of a system can represent the motion of a system.
Therefore, for an isolated system of many particles in which the total mass
M is preserved, the velocity, total momentum, acceleration of the system are

—

Velocity of the system

ZmiVi

> drew _9( 1< ) 1 dr;
VCM:ﬂ:a(MZmirij:_zmi =

Total Momentum
of the system

Acceleration of
the system

The external force
exerting on the system

If net external force is 0
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—~ - Vi - - —
pCM:MVCM ZMZL:ZMV' _Zp:ptot
a dvey _ d ( 1 mGJ 1 dv, Zmiai
=~ dil M iVil=—yYm—=
E _ - dp, What about the
Z Fe« =Macu = Zmi ai = dtt : internal forces?
_ do. = ,
Z]: 0= P T const System’s momentumJ
at is conserved.
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