
PHYS 1443 – Section 002
Lect re #16Lecture #16

Wednesday, Nov. 5, 2008y, ,
Dr. Jae Yu

C lli i  El ti  d I l ti  C lli i• Collisions – Elastic and Inelastic Collisions
• Two Dimensional Collisions

C t  f M• Center of Mass
• Fundamentals of Rotational Motions

Wednesday, Nov. 5, 2008 PHYS 1441-001, Summer 2008 Dr. 
Jaehoon Yu

1PHYS 1443-002, Fall 2008
Dr. Jaehoon Yu

1



Announcements
Quiz next Monday  Nov  10• Quiz next Monday, Nov. 10
– Beginning of the class
– Covers CH 9– Covers CH 9

• Mid-term grade discussions
– If you haven’t done it  please do so today after the class in my If you haven t done it, please do so today after the class in my 

office, CPB342
• Third term exam

– 1 – 2:20pm, Wednesday, Nov. 19, in SH103
– Covers CH 9 – What we complete next Wednesday, Nov. 12
– Jason will do a summary session on Monday, Nov. 17

• Tea time with Dr. Durrance, a former astronaut, in SH108 at 
3  thi  ft
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3pm this afternoon



Extra-Credit Special Project
• Derive the formula for the final velocity of two objects 

which underwent an elastic collision as a function of 
known quantities m1, m2, v01 and v02 in page 6 of this 
lecture note.  Must be done in far greater detail than 
what is covered in the lecture note.
– 20 points extra credit

• Describe in detail what happens to the final velocities 
if m1=m2.1 2
– 5 point extra credit

• Due: Start of the class next Wednesday, Nov. 12
Wednesday, Nov. 5, 2008 PHYS 1441-001, Summer 2008
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Due: Start of the class next Wednesday, Nov. 12



Collisions 
G li d lli i     l  h  h i l  b  l  h  lli i  

Consider a case of a collision The collisions of these ions never involve 

Generalized collisions must cover not only the physical contact but also the collisions 
without physical contact such as that of electromagnetic ones in a microscopic scale.

Consider a case of a collision 
between a proton on a helium ion. 

f
physical contact because the electromagnetic 
repulsive force between these two become great 
as they get closer causing a collision.F y g g

1 21dp F dt=t

F F12 Assuming no external forces, the force 
object 2 exerted on object 1 by, F21, 
changes the momentum of object 1 by  

F21

changes the momentum of object 1 by  

Likewise for object 2 by object 1  2 12dp F dt=

Using Newton’s 3rd law we obtain   

So the momentum change of the system in the 

2dp

d p
12F dt= 21F dt=− 1dp=−

1 2d p d p= + 0=
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collision is 0, and the momentum is conserved
systemp 1 2p p= + constant=



Elastic and Inelastic Collisions 
M  i  d i   lli i   l   l f   li ibl

Collisions are classified as elastic or inelastic based on whether the kinetic energy 
is conserved  meaning whether it is the same before and after the collision

Momentum is conserved in any collisions as long as external forces are negligible.

is conserved, meaning whether it is the same before and after the collision.

A collision in which the total kinetic energy and momentum 
are the same before and after the collision.  

Elastic 
Collision

T  t  f i l ti  lli i P f tl  i l ti  d i l ti   

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision, but momentum is.

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision, 
moving together at a certain velocitymoving together at a certain velocity.
Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

N t  M t  i  t t i  ll lli i  b t ki ti   i  l  i  l ti  lli i   
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Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  



Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 

1 21 2i im v m v+ 1 2( ) fm m v= +

1 21 2i im v m v+Momentum is conse ved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions? 1 21 2i im v m v+

1 2

1 2( )
fv

m m
=

+

1 21 2f fmv m v= +

In an elastic collision, both the 
momentum and the kinetic energy 

( )

2
22

2
11 2

1
2
1

ii vmvm + 2
22

2
11 2

1
2
1

ff vmvm +=

( )are conserved. Therefore, the 
final speeds in an elastic collision 
can be obtained in terms of initial 

( )2
1

2
11 fi vvm −

( ) ( )

( )2
2

2
22 fi vvm −=

( )( )fifi vvvvm 11111 +− ( )( )fifi vvvvm 22222 +−=

F  t  can be obtained in terms of initial 
speeds as ( ) ( )fifi vvmvvm 222111 −=−

vmvmmv 221 2 ⎞
⎜⎜
⎛

+
⎞

⎜⎜
⎛ −

=

From momentum 
conservation above

vmmvmv 2112 ⎞
⎜⎜
⎛ −

+
⎞

⎜⎜
⎛

=
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iif v
mm

v
mm

v 2
21

1
21

1
⎠

⎜⎜
⎝ +

+
⎠

⎜⎜
⎝ +

= iif v
mm

v
mm

v 2
21

1
21

2
⎠

⎜⎜
⎝ +

+
⎠

⎜⎜
⎝ +

=

What happens when the two masses are the same?



Example for Collisions
A car of mass 1800kg stopped  at a traffic light is rear ended by a 900kg car  and the A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and the 
two become entangled.  If the lighter car was moving at 20.0m/s before the collision 
what is the velocity of the entangled cars after the collision?

Th  t  b f  d ft  th  lli i  

ip
The momenta before and after the collision are

20.0m/s

m2

Before collision

1 21 2i im v m v= + 220 im v= +

m1

/

Since momentum of the system must be conserved
After collision

fp 1 21 2f fm v m v= + ( )1 2 fm m v= +

vf
m1

m2 i fp p= ( )1 2 fm m v+ 22 im v=

22 im v 900 20.0 6 6 /i×

What can we learn from these equations 
on the direction and magnitude of the 

f

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 

fv ( )
2

1 2m m
=

+
900 20.0 6.67  /
900 1800

i i m s= =
+
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on the direction and magnitude of the 
velocity before and after the collision?

car s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.



Two dimensional Collisions 
In two dimension  one needs to use components of momentum and In two dimension, one needs to use components of momentum and 
apply momentum conservation to solve physical problems.

1 21 2i im v m v+ =
v1i

1 21 2f fm v m v+

m2

m1

v1i

1 1 2 2ix ixm v m v+ =

1 1 2 2iy iym v m v+ =

x-comp.

y-comp.
1 1 2 2fx fxm v m v+

1 1 2 2fy fym v m v+

θ
φ

Consider a system of two particle collisions and scatters in 
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 

llconservation tells us:

1 21 2i im v m v+

fxfx vmvm 2211 += φθ coscos 2211 ff vmvm +=

11 im v=

ivm 11

21And for the elastic collisions, the What do you think 

fxfx 2211 φ2211 ff

iyvm 11 0= fyfy vmvm 2211 += φθ sinsin 2211 ff vmvm −=

ixvm 11

22 11
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2
1 12

1
i

vmAnd for the elastic collisions, the 
kinetic energy is conserved:

we can learn from 
these relationships?

2
22

2
11 2

1
2
1

ff vmvm +=



Example for Two Dimensional Collisions
Proton #1 with a speed 3 50x105 m/s collides elastically with proton #2 initially at Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis and 
proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the two 
protons and the scattering angle of proton #2, φ.protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

g2

θ

ipvm 1 φθ coscos 21 fpfp vmvm +=

φθ sinsin 21 fpfp vmvm − 0=

x-comp.

y-comp.
φ Canceling mp and putting in all known quantities, one obtains

(1)   1050.3cos37cos 5
21 ×=+ φff vv ο

smv f /1080.2 5
1 ×=

From kinetic energy 
conservation:

( ) (3)10503 2225 vv +=×
Solving Eqs. 1-3 
equations  one gets

Do this at 
home☺

(2)   sin37sin 21 φff vv =ο

smv /10112 5×=
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( ) (3)    1050.3 21 ff vv +=× equations, one gets home☺smv f /1011.22 ×=

ο0.53=φ



Center of Mass
We’ve been solving physical problems treating objects as sizelessWe ve been solving physical problems treating objects as sizeless
points with masses, but in realistic situations objects have shapes 
with masses distributed throughout the body.    

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point. 

The total external force exerted on the system of The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 

/a F M= ∑

What does above statement 
tell you concerning the 
forces being exerted on the 

Consider a massless rod with two balls attached at either end.

the mass of the system is concentrated on the 
center of mass.system?

m1 m2 Th i i f h f f hi i

CMx ≡

1 2
x1 x2

The position of the center of mass of this system is 
the mass averaged position of the systemxCM CM is closer to the 

h i  bj t
1 1 2 2m x m x+                 
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CMx heavier object1 2m m+



Motion of a Diver and the Center of Mass

Diver performs a simple dive.p p
The motion of the center of mass 
follows a parabola since it is a 
projectile motionprojectile motion.

Diver performs a complicated dive.
The motion of the center of mass 
still follows the same parabola since still follows the same parabola since 
it still is a projectile motion.

The motion of the center of mass 
Wednesday, Nov. 5, 2008 PHYS 1441-001, Summer 2008 Dr. 

Jaehoon Yu
11

The motion of the center of mass 
of the diver is always the same. 



Example 9 – 14 
Thee people of roughly equivalent mass M on a lightweight (air filled) Thee people of roughly equivalent mass M on a lightweight (air-filled) 
banana boat sit along the x axis at positions x1=1.0m, x2=5.0m, and 
x3=6.0m.  Find the position of CM. 

Using the formula 
for CM

∑
= i

ii xm
x

∑
=

i
i

CM m
x

1.0M ⋅ 12.0
3

M
M

==
M M M+ +

4.0( )m=
5.0M+ ⋅ 6.0M+ ⋅
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3M                                         M M M+ +



Example for Center of Mass in 2-D
A system consists of three particles as shown in the figure   Find the A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system.

Using the formula for CM for each Using the formula for CM for each 
position vector component

∑ ii xm

m1
y=2 (0,2)

(0 75 4) ∑ ii ym

∑
∑

=

i
i

i
ii

CM m
x

m
(1,0)

m
(2,0)

(0.75,4)
rCM ∑

∑
=

i
i

i
ii

CM m

y
y

One obtains CMr

m2

x=1
m3

x=2

∑ ii xm
++ 2+

 CMx i=
( )2 3 1

1 2 3

2  2m m i m j
m m m
+ +

=
+ +CMy j+

CMx If kgmmkgm 1;2 321 ===

3 4 0 75i j i j+

∑
∑

=

i
i

i
ii

m 321

332211

mmm
xmxmxm

++
++

=
321

32 2
mmm

mm
++

+
=

∑ ii ym
332211 ymymym ++ 12m
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0.75
4

CM
jr i j= = +CMy ∑

=

i
i

i

m 321

332211

mmm
ymymym

++
++

=
321

12
mmm

m
++

=



Center of Mass of a Rigid Object
Th  f l  f  CM  b  t d d t   t  f  ti l  The formula for CM can be extended to a system of many particles 
or a Rigid Object 

∑ ym ∑ zmm x∑
CMx =

∑
∑

=

i
i

i
ii

CM m

ym
y

∑
∑

=

i
i

i
ii

CM m

zm
z1 1 2 2 n nm x m x m x+ +⋅⋅⋅+ i i

i

m x∑           
i

i
m∑1 2

                                      

nm m m
=

+ +⋅⋅⋅+

The position vector of the 
center of mass of a many 
particle system is 

CMr C M C M C Mx i y j z k= + +  i i i i i i
i i i

i
i

m x i m y j m z k

m

+ +
=
∑ ∑ ∑

∑
ii

i
m r∑

A rigid body – an object with shape 
and size with mass spread throughout 

p y

M

xm
x i

ii

CM

∑ ∆
≈

∆mi

i
C Mr

M
=

and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 

CMx

1

ri
rCM M

xm
i

ii

mi

∑ ∆
=

→∆ 0
lim ∫= xdm

M
1
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the given shape of the object 1
CMr rdm

M
= ∫



Example of Center of Mass; Rigid Body
Show that the center of mass of a rod of mass M and length L lies in midway 

The formula for CM of a continuous object isL

Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length.

∫
=

=
=

Lx

xCM xdm
M

x
0

1

d Since the density of the rod (λ) is constant; LM /=λ

Therefore

x dx
dm=λdx

Since the density of the rod (λ) is constant;

x

dxdm λ=
LM /λ

The mass of a small segment

∫
=Lx

xdx1 λ
Lx=

⎥
⎤

⎢
⎡ 211 λ ⎞

⎜
⎛ 211 Lλ ⎞

⎜
⎛= ML11 LTherefore CMx

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=α x

∫ ==
x

xdx
M 0

λ
x

x
M =

⎥⎦⎢⎣
=

0

2

2
λ

⎠
⎜
⎝

=
2

L
M

λ
⎠

⎜
⎝

= ML
M 2 2

=

CMxM ∫
=

=
=

Lx

x
dx

0
λ ∫

=

=
=

Lx

x
xdx

0
α

Lx

x
=

⎥
⎤

⎢
⎡= 21α 21 Lα=

∫
=

=
=

Lx

x
xdx

M 0

1 λ ∫
=

=
=

Lx

x
dxx

M 0

21 α
Lx

x

x
M

=

=
⎥⎦
⎤

⎢⎣
⎡=

0

3

3
11 α

⎞⎛ 11 ⎞⎛ 21
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x

x
=

⎥⎦⎢⎣
=

02
α

2
Lα=

⎟
⎠
⎞

⎜
⎝
⎛= 3

3
11 L

M
α ⎟

⎠
⎞

⎜
⎝
⎛= ML

M 3
21

3
2L

=CMx



Center of Mass and Center of Gravity
Th   f  f  i  bj  li   h  

CM
The center of mass of any symmetric object lies on the 
axis of symmetry and on any plane of symmetry, if  the 
object’s mass is evenly distributed throughout the body. Axis of g

How do you think you can 
determine the CM of the 
objects that are not 

Axis of 
symmetryOne can use gravity to locate CM.

1. Hang the object by one point and draw a vertical line 
following a plum-bob.

Center of Gra it

objects that are not 
symmetric? 2. Hang the object by another point and do the same.

3. The point where the two lines meet is the CM. 
Since a rigid object can be considered as a collection Center of Gravity

F
∆mi

Since a rigid object can be considered as a collection 
of small masses, one can see the total gravitational 
force exerted on the object as 

F∑ ∆∑ M

The net effect of these small gravitational 
forces is equivalent to a single force acting on 

gF

∆mig What does this 
ti  t ll ?

i
i

F= ∑ i
i

m g= ∆∑ M g=
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q g g
a point (Center of Gravity) with mass M.equation tell you?

The CoG is the point in an object as if all the gravitational force is acting on!



Motion of a Group of Particles
W ’  l d h  h  CM f     h  i  f    We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass 
M is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system CMv CMdr
dt

=
1

ii
d m r
dt M
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ 1 i
i
drm

M dt
= ∑ iim v

M
=∑

Total Momentum 
of the system CMp CMMv=

iim v
M

M
= ∑

iim v=∑ totp p= =∑

1d ⎛ ⎞ ∑Acceleration of 
the system CMa

Wh b h

CMdv
dt

=
1

ii
d m v
dt M
⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ 1 i
i
dvm

M dt
= ∑ iim a

M
= ∑

The external force 
exerting on the system extF∑

If t t l f  i  0 0F∑ System’s momentum 

What about the 
internal forces?CMMa= iim a=∑ totd p

dt
=

totdp
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If net external force is 0 0extF =∑ System s momentum 
is conserved.

totp
dt

= consttotp =


