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• Rolling Motion of a Rigid BodyRolling Motion of a Rigid Body
• Angular Momentum
• Conservation of Angular Momentum• Conservation of Angular Momentum
• Relationship between angular and linear quantities
• Similarity between Linear and Angular Quantities• Similarity between Linear and Angular Quantities

Today’s homework is HW #11, due 9pm, Monday, Dec. 1!!
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Announcements
• 3rd term exam grading not completed

Will be done by Monday  Dec  1– Will be done by Monday, Dec. 1
• Thanksgiving is this Thursday, Nov. 27

– Vote for the class this Wednesday, Nov. 26 
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Rolling Motion of a Rigid Body
What is a rolling motion? A more generalized case of a motion where the 

rotational axis moves together with an object
A rotational motion about a moving axis

To simplify the discussion, let’s 
make a few assumptions

A rotational motion about a moving axis
1. Limit our discussion on very symmetric 

objects, such as cylinders, spheres, etc

Let’s consider a cylinder rolling on a flat surface, without slipping.

j y
2. The object rolls on a flat surface

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is s=Rθ

Thus the linear 
speed of the CM isR θ s dt

dsvCM =
dt
dR θ

= ωR=
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s=Rθ The condition for a “Pure Rolling motion”



More Rolling Motion of a Rigid Body

As we learned in rotational motion  all points in a rigid body 

The magnitude of the linear acceleration of the CM is
CMa CMdv

dt
=

dR
dt
ω

= αR=

As we learned in rotational motion, all points in a rigid body 
moves at the same angular speed but at different linear speeds.

P’

CM
vCM

2vCM

CM is moving at  the same speed at all times.

At any given time, the point that comes to P has 0 linear 
speed while the point at P’ has twice the speed of CM Why??P

A rolling motion can be interpreted as the sum of Translation and Rotation
P’ vCM P’ v=Rω

P’
2vCM

P

CM
vCM +

P

CM

v=Rω

v=0 =
P

CM
vCM
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P
vCM

Pv=Rω P



Kinetic Energy of a Rolling Sphere
L t’  id   h  ith di  R Let’s consider a sphere with radius R 
rolling down the hill without slipping.

R

h ω
21 2 21

=K
h

θ
vCM

21 CMvI ⎛ ⎞
⎜ ⎟

21
2 CMI ω 2 21

2
MR ω+

21 Mv+
Since vCM=Rω 2

CM
CMI

R
= ⎜ ⎟

⎝ ⎠
2

2

1
CM

CM vMI
⎠
⎞

⎜
⎝
⎛ +=

2 CMMv+

Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 

22 CMv
R ⎠

⎜
⎝

q p gy pCM in terms of known 
quantities and how do you 
find this out?

K 2
22

1
CM

CM vM
R
I

⎟
⎠
⎞

⎜
⎝
⎛ += Mgh=

2 h
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Example for Rolling Kinetic Energy
For solid sphere as shown in the figure  calculate the linear speed of the CM at the For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method.

Gravitational Force,M
h

What are the forces involved in this motion?
f

Newton’s second law applied to the CM gives
Frictional Force, Normal Force

n

∑ xF
h

θMg

Newton s second law applied to the CM gives
fMg −= θsin CMMa=

∑ yF θcosMgn −= 0=
Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque CMτ

We know that  We 

∑ y

fR= αCMI=

I MR 22
2We know that  

2

5
2 MRICM =

We 
obtain 

f

Substituting f in MaMg 7sin =θ

R
ICM α

= ⎟
⎠
⎞

⎜
⎝
⎛=

R
a

R

MR
CM5 CMMa

5
2

=

θsin5 ga =
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αRaCM =

f
dynamic equations CMMaMg

5
sin =θ θsin

7
gaCM =



Angular Momentum of a Particle
If  b t   l  hil  i   b d  ill t t  b t th  l  i i  If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used the linear momentum to solve physical problems 
with linear motions, the angular momentum will do the same for rotational motions.
z

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v

L
The angular momentum L of this 

z

L r p≡ ×particle relative to the origin O is 
What is the unit and dimension of angular momentum? 2 /kg m s⋅

N t  th t d d   i i  O  Wh ? B  h

2 1[ ]MLT−

x

y

φsinmvrL =

Note that L depends on origin O. Why? Because r changes
The direction of L is +z.What else do you learn? 

Since p is mv, the magnitude of L becomes φ

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum.

p g
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If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim.



Angular Momentum and Torque
C   b  h  t f  ti    ti l  d p

Total external forces exerting on a particle is the same as the change of its linear momentum.

Can you remember how net force exerting on a particle 
and the change of its linear momentum are related?

d pF
d t

=∑
g p g

τ∑
The same analogy works in rotational motion between torque and angular momentum. 

Net torque acting on the particle is r F= × ∑ d pr= ×τ∑Net torque acting on the particle is 

d L
d t

z

L=rxp
( )d r p×

=
d r d pp r
d t d t

= × + × 0 d pr
d t

= + ×

r F× ∑ r
d t

= ×

τ= ∑
d t

yO

L=rxp

r m Why does this work? Because v is parallel to 
the linear momentum

d t d t d t d t

Thus the torque-angular 
momentum relationship

d L
d t

τ =∑
x

pφ
the linear momentum
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The net torque acting on a particle is the same as the time rate change of its angular momentum

d t



Angular Momentum of a System of Particles
Th  t t l l  t  f  t  f ti l  b t  i t The total angular momentum of a system of particles about some point 
is the vector sum of the angular momenta of the individual particles

L ∑L =

Since the individual angular momentum can change, the total 
l  t  f th  t   h

2L+ . . . . . .+ nL+ iL= ∑1L

angular momentum of the system can change.
Both internal and external forces can provide torque to individual particles.  However, 
the internal forces do not generate net torque due to Newton’s third law.

Let’s consider a two particle 
system where the two exert 
forces on each other

Since these forces are the action and reaction forces with 
directions lie on the line connecting the two particles, the 
vector sum of the torque from these two becomes 0

ex t
d L
d t

τ =∑
Thus the time rate change of the angular momentum of a 
system of particles is equal to only the net external torque
acting on the system

forces on each other. vector sum of the torque from these two becomes 0.
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d t∑acting on the system



Example for Angular Momentum
A particle of mass m is moving on the xy plane in a circular path of radius r and linear A particle of mass m is moving on the xy plane in a circular path of radius r and linear 
velocity v about the origin O.  Find the magnitude and the direction of the angular 
momentum with respect to O.

Using the definition of angular momentum

r

y v

L

Using the definition of angular momentum

Since both the vectors  r and v  are on x y plane and 
r p= × r m v= × m r v= ×

xO
Since both the vectors, r and v, are on x-y plane and 
using right-hand rule, the direction of the angular 
momentum vector is +z (coming out of the screen)

L φi ο90iThe magnitude of the angular momentum is L

So the angular momentum vector can be expressed as L mrvk=

mr v= × φsinmrv= ο90sinmrv= mrv=

Find the angular momentum in terms of angular velocity ω.

Using the relationship between linear and angular speed 
2 2
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L mrvk= 2mr kω= 2mr ω= Iω=



Angular Momentum of a Rotating Rigid Body
L t’  id   i id b d  t ti  b t  fi d iz Let’s consider a rigid body rotating about a fixed axis
Each particle of the object rotates in the xy plane about the z-axis 
at the same angular speed, ω

z

L=rxp

iiii vrmL =
Magnitude of the angular momentum of a particle of mass mi
about origin O is miviri

yO

pφ
r m

ω2
ii rm=

What do 
you see?

x φ
Summing over all particle’s angular momentum about z axis

∑=
i

iz LL ( )ω∑=
i

iiz rmL 2( )∑=
i

ii rm ω2 ωI=

dL

y
Since I is constant for a rigid body

dt
dL z α is angular 

accelerationdt
dI ω

= αI=

ατ I
dt

dLz
ext ==∑Thus the torque-angular momentum 

relationship becomes

The net external torque acting on a rigid body rotating about a fixed axis is equal to the moment of 
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The net external torque acting on a rigid body rotating about a fixed axis is equal to the moment of 
inertia about that axis multiplied by the object’s angular acceleration with respect to that axis.



Example for Rigid Body Angular Momentum
A rigid rod of mass M and length l is pivoted without friction at its center   Two particles of mass A rigid rod of mass M and length l is pivoted without friction at its center.  Two particles of mass 
m1 and m2 are attached to either end of the rod.  The combination rotates on a vertical plane with 
an angular speed of ω. Find an expression for the magnitude of the angular momentum.

The moment of inertia of this system is

I

The moment of inertia of this system isy

l
m2

θ m2 g
⎞⎛2l

21 mmrod III ++= 21
12

Ml= +

⎞⎛2 1l

2
1

1
4

m l + 2
2

1
4

m l

xO

m1

θ
⎟
⎠
⎞

⎜
⎝
⎛ ++== 21

2

3
1

4
mmMlIL ωω

Find an expression for the magnitude of the angular acceleration of the 

⎟
⎠
⎞

⎜
⎝
⎛ ++= 21

2

3
1

4
mmMl

First compute the θτ cos
21
lgm=1

m1 g

If m1 = m2, no angular 
t  b  th  t 

Find an expression for the magnitude of the angular acceleration of the 
system when the rod makes an angle θ with the horizon.

 cos
222 θτ lgm−=

net external torque 2momentum because the net 
torque is 0. 
If θ=+/−π/2, at equilibrium 
so no angular momentum

2τττ += 1ext

2
( )
2

cos 21 mmgl −
=

θ

( )1 cosm m gl θ− ( )2 θ
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α
so no angular momentum. Thus α 

becomes I
ext∑=

τ
( )1 2

2

1 2

cos
2

1
4 3

m m gl

l M m m

θ−
=

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

( )1 2

1 2

2 cos
1
3

m m g
lM m m

θ−
=

⎛ ⎞+ +⎜ ⎟
⎝ ⎠



Conservation of Angular Momentum
Remember under what condition the linear momentum is conserved?Remember under what condition the linear momentum is conserved?

Linear momentum is conserved when the net external force is 0.
t

0 d pF
dt

= =∑

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 

p const=

extτ =∑ d L
d t

= 0

Angular momentum of the system before and 

resultant external torque acting on the system is 0. 

What does this mean?

L =
d t

const
g y

after a certain change is the same.

iL

What does this mean?

fL= constant=

Three important conservation laws 
for isolated system that does not get 
affected by external forces

Mechanical Energy

Linear Momentumi fp p=
i i f fK U K U+ = +
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i fL L=

affected by external forces
Angular Momentum



Example for Angular Momentum Conservation
A star rotates with a period of 30 days about an axis through its center   After the star A star rotates with a period of 30 days about an axis through its center.  After the star 

undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron star of radius 3.0km.  Determine the period of rotation of the neutron star.  

Wh t i    b t th  ? The period will be significantly shorter  What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller.

Let’s make some assumptions: 1. There is no external torque acting on it
2 Th  h  i  h i l

fi LL =

2. The shape remains spherical
3. Its mass remains constant

Using angular momentum 

ω =

fi

The angular speed of the star with the period T is

Using angular momentum 
conservation

ffi II ωωι =
2π    
T

Thus fω
f

i

I
I ιω

=
if

i

Tmr
mr π2

2

2

=

π2 fr ⎞
⎜
⎛ 2

03 2
⎞⎛

T
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fT
fω

π2
= i

i

f T
r
r

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 2 days30

100.1
0.3

4 ×⎟
⎠
⎞

⎜
⎝
⎛

×
= days6107.2 −×= s23.0=



Kepler’s Second Law and Angular Momentum Conservation
Consider a planet of mass M moving around the Sun in an elliptical orbit

Since the gravitational force acting on the planet is 
always toward radial direction, it is a central force

Consider a planet of mass Mp moving around the Sun in an elliptical orbit.

A
D

r y , f

τ

Therefore the torque acting on the planet by this 
force is always 0.

S B
A

C

r
dr

r F= × ˆr Fr= × 0=τ

Because the gravitational force exerted on a 

Since torque is the time rate change of angular 
momentum L, the angular momentum is constant. τ

r F= × r Fr= × 0

d L
dt

= 0= L const=
Because the gravitational force exerted on a 
planet by the Sun results in no torque, the 
angular momentum L of the planet is constant. L

Since the area swept by the dA

r p= × pr M v= × pM r v= × const=

1 1 L L

This is Keper’s second law which states that the radius vector from 

dA
Since the area swept by the 
motion of the planet is dt

dA1
2

r d r= ×
1
2

r vdt= × dt
M
L

p2
=

pM
L

2
= const=
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This is Keper s second law which states that the radius vector from 
the Sun to a planet sweeps out equal areas in equal time intervals. 



Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.All physical quantities in linear and rotational motions show striking similarity.

Quantities Linear Rotational
Mass Mass Moment of InertiaMass Mass Moment of Inertia

Length of motion Distance Angle     (Radian)

2I mr=
L

M
θg g ( )

Speed
Acceleration

rv
t

∆
=

∆ t
θω ∆

=
∆

va
t

∆
=

∆ t
ωα ∆

=
∆

Force Force Torque
Work Work Work

t∆

F ma= Iτ α=
W F d= ⋅ W τθ=

Power
Momentum

P F v= ⋅ τω=P

21 21
p mv= L I ω=
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Kinetic Energy Kinetic Rotational2

2
1 mvK = 2

2
1 ωIK R =


