• Work-Kinetic Energy Theorem
• Work and Energy Involving Kinetic Friction
• Potential Energy
• Gravitational Potential Energy
• Elastic Potential Energy
• Mechanical Energy Conservation

Today's homework is homework #9, due 9pm, Tuesday, Nov. 10!!
Announcements

• 2nd term exam
 – 1 – 2:20pm, Wednesday, Nov. 4
 – Non-comprehensive exam
 – Covers: Ch. 3.5 – CH6
 – Mixture of free response problems and multiple choices
 – There will be a review session in class Monday, Nov. 2

• Quiz #3
 – Class average: 2.7/5
 • Equivalent to 54/100
 • Previous quizzes: 63/100 and 48/100
 – Top score: 5
Kinetic Energy and Work-Kinetic Energy Theorem

- Some problems are hard to solve using Newton’s second law
 - If forces exerting on an object during the motion are complicated
 - Relate the work done on the object by the net force to the change of the speed of the object

\[W = (\sum \vec{F}) \cdot \vec{s} = (ma \cos \theta) s = (ma) s \]

Suppose net force \(\Sigma \vec{F} \) was exerted on an object for displacement \(d \) to increase its speed from \(v_i \) to \(v_f \).

The work on the object by the net force \(\Sigma \vec{F} \) is

\[2as = v_f^2 - v_i^2 \]

Using the kinematic equation of motion

Work \(W = (ma)s = \frac{1}{2} m(v_f^2 - v_i^2) = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \)

Work \(W = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = KE_f - KE_i = \Delta KE \)

Kinetic Energy \(KE \equiv \frac{1}{2}mv^2 \)

Work done by the net force causes change in the object’s kinetic energy.
When a net external force by the jet engine does work on an object, the kinetic energy of the object changes according to the Work-Kinetic Energy Theorem:

\[W = KE_f - KE_o = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_o^2 \]
The mass of the space probe is 474-kg and its initial velocity is 275 m/s. If the 56.0-mN force acts on the probe parallel through a displacement of \(2.42 \times 10^9\) m, what is its final speed?

\[
\left[(\sum F)\cos \theta \right] s = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_o^2
\]

Solve for \(v_f\):

\[
v_f = \sqrt{v_o^2 + 2 \left(\sum F \cos \theta \right) s / m}
\]

\[
v_f = \sqrt{(275 \text{ m/s})^2 + 2 \left(5.60 \times 10^{-2} \text{ N} \right) \cos 0^\circ \left(2.42 \times 10^9 \text{ m} \right) / 474}
\]

\[
v_f = 805 \text{ m/s}
\]
Ex. Satellite Motion and Work By the Gravity

A satellite is moving about the earth in a circular orbit and an elliptical orbit. For these two orbits, determine whether the kinetic energy of the satellite changes during the motion.

For a circular orbit No change! Why not?

Gravitational force is the only external force but it is perpendicular to the displacement. So no work.

For an elliptical orbit Changes! Why?

Gravitational force is the only external force but its angle with respect to the displacement varies. So it performs work.
Work and Energy Involving Kinetic Friction

- What do you think the work looks like if there is friction?
 - Static friction does not matter! Why? It isn’t there when the object is moving.
 - Then which friction matters? Kinetic Friction

Friction force F_{fr} works on the object to slow down.

The work on the object by the friction F_{fr} is

$$W_{fr} = F_{fr}d \cos(180) = -F_{fr}d \quad \Delta KE = -F_{fr}d$$

The negative sign means that the work is done on the friction!!

The final kinetic energy of an object, taking into account its initial kinetic energy, friction force and other source of work, is

$$KE_f = KE_i + \sum W - F_{fr}d$$

$t=0$, KE_i
Friction, Engine work
$t=T$, KE_f
Ex. Downhill Skiing

A 58kg skier is coasting down a 25° slope. A kinetic frictional force of magnitude $f_k=70N$ opposes her motion. Neat the top of the slope, the skier’s speed is $v_0=3.6m/s$. Ignoring air resistance, determine the speed v_f at the point that is displaced 57m downhill.

What are the forces in this motion?
Gravitational force: F_g Normal force: F_N Kinetic frictional force: f_k

What are the X and Y component of the net force in this motion?

Y component $\sum F_y = F_{gy} + F_N = -mg \cos 25° + F_N = 0$

From this we obtain $F_N = mg \cos 25° = 58 \cdot 9.8 \cdot \cos 25° = 515N$

What is the coefficient of kinetic friction? $f_k = \mu_k F_N$ $\mu_k = \frac{f_k}{F_N} = \frac{70}{515} = 0.14$
Ex. Now with the X component

X component

\[\sum F_x = F_{gx} - f_k = mg \sin 25^\circ - f_k = (58 \cdot 9.8 \cdot \sin 25^\circ - 70) = 170 N = ma \]

Total work by this force

\[W = (\sum F_x) \cdot s = (mg \sin 25^\circ - f_k) \cdot s = (58 \cdot 9.8 \cdot \sin 25^\circ - 70) \cdot 57 = 9700 J \]

From work-kinetic energy theorem

\[W = KE_f - KE_i \quad \rightarrow \quad KE_f = \frac{1}{2} mv_f^2 = W + KE_i = W + \frac{1}{2} mv_0^2 \]

Solving for \(v_f \)

\[v_f^2 = \frac{2W + mv_0^2}{m} \quad \rightarrow \quad v_f = \sqrt{\frac{2W + mv_0^2}{m}} = \sqrt{\frac{2 \cdot 9700 + 58 \cdot (3.6)^2}{58}} = 19 \text{ m/s} \]

What is her acceleration?

\[\sum F_x = ma \quad \rightarrow \quad a = \sum \frac{F_x}{m} = \frac{170}{58} = 2.93 \text{ m/s}^2 \]
Example of Work Under Friction

A 6.0kg block initially at rest is pulled to East along a horizontal surface with coefficient of kinetic friction $m_k=0.15$ by a constant horizontal force of 12N. Find the speed of the block after it has moved 3.0m.

Work done by the force F is

$$W_F = |F||d| \cos \theta = 12 \times 3.0 \cos 0 = 36 (J)$$

Work done by friction F_k is

$$W_k = F_k \cdot d = |F_k||d| \cos \theta = |\mu_k mg||d| \cos \theta$$

$$= 0.15 \times 6.0 \times 9.8 \times 3.0 \cos 180 = -26 (J)$$

Thus the total work is

$$W = W_F + W_k = 36 - 26 = 10(J)$$

Using work-kinetic energy theorem and the fact that initial speed is 0, we obtain

$$W = W_F + W_k = \frac{1}{2}mv_f^2$$

Solving the equation for v_f, we obtain

$$v_f = \sqrt{\frac{2W}{m}} = \sqrt{\frac{2 \times 10}{6.0}} = 1.8 m/s$$
Potential Energy

Energy associated with a system of objects \Rightarrow **Stored energy which has the potential or the possibility to work or to convert to kinetic energy**

In order to describe potential energy, U, a system must be defined.

The concept of potential energy can only be used under the special class of forces called the conservative force which results in the principle of conservation of mechanical energy.

$$E_M = KE_i + PE_i = KE_f + PE_f$$

What are other forms of energies in the universe?

- Mechanical Energy
- Chemical Energy
- Biological Energy
- Electromagnetic Energy
- Nuclear Energy

These different types of energies are stored in the universe in many different forms!!!

If one takes into account ALL forms of energy, the total energy in the entire universe is conserved. It just transforms from one form to another.
Gravitational Potential Energy

The potential energy is given to an object by the gravitational field in the system of Earth by virtue of the object’s height from an arbitrary zero level.

When an object is falling, the gravitational force, Mg, performs the work on the object, increasing the object’s kinetic energy. So the potential energy of an object at a height y, which is the potential to do work, is expressed as

$$PE = \vec{F}_g \cdot \vec{y} = |\vec{F}_g||\vec{y}|\cos\theta = |\vec{F}_g||\vec{y}| = mgh \quad PE \equiv mgh$$

The work done on the object by the gravitational force as the brick drops from y_i to y_f is:

$$W_g = PE_i - PE_f = mgh_i - mgh_f = -\Delta PE$$

What does this mean?

Work by the gravitational force as the brick drops from y_i to y_f is the negative change of the system’s potential energy.

⇒ Potential energy was spent in order for the gravitational force to increase the brick’s kinetic energy.
Ex. A Gymnast on a Trampoline

The gymnast leaves the trampoline at an initial height of 1.20 m and reaches a maximum height of 4.80 m before falling back down. What was the initial speed of the gymnast?
Ex. Continued

From the work-kinetic energy theorem

\[W = \frac{1}{2} mv_f^2 - \frac{1}{2} mv_o^2 \]

Work done by the gravitational force

\[W_{\text{gravity}} = mg (h_o - h_f) \]

Since at the maximum height, the final speed is 0. Using work-KE theorem, we obtain

\[mg (h_o - h_f) = -\frac{1}{2} mv_o^2 \]

\[v_o = \sqrt{-2g (h_o - h_f)} \]

\[\therefore v_o = \sqrt{-2 \left(9.80 \text{ m/s}^2 \right)(1.20 \text{ m} - 4.80 \text{ m})} = 8.40 \text{ m/s} \]
Example for Potential Energy

A bowler drops bowling ball of mass 7kg on his toe. Choosing the floor level as y=0, estimate the total work done on the ball by the gravitational force as the ball falls on the toe.

Let’s assume the top of the toe is 0.03m from the floor and the hand was 0.5m above the floor.

\[U_i = mgy_i = 7 \times 9.8 \times 0.5 = 34.3\,J \quad U_f = mgy_f = 7 \times 9.8 \times 0.03 = 2.06\,J \]

\[W_g = -\Delta U = -(U_f - U_i) = 32.24\,J \approx 30\,J \]

b) Perform the same calculation using the top of the bowler’s head as the origin.

What has to change? First we must re-compute the positions of the ball in his hand and on his toe.

Assuming the bowler’s height is 1.8m, the ball’s original position is –1.3m, and the toe is at –1.77m.

\[U_i = mgy_i = 7 \times 9.8 \times (-1.3) = -89.2\,J \quad U_f = mgy_f = 7 \times 9.8 \times (-1.77) = -121.4\,J \]

\[W_g = -\Delta U = -(U_f - U_i) = 32.2\,J \approx 30\,J \]
Elastic Potential Energy

Potential energy given to an object by a spring or an object with elasticity in the system that consists of an object and the spring.

The force spring exerts on an object when it is distorted from its equilibrium by a distance x is

$$F_s = -kx$$

Hooke’s Law

The work performed on the object by the spring is

$$W_s = \int_{x_i}^{x_f} (-kx) \, dx = \left[-\frac{1}{2}kx^2\right]_{x_i}^{x_f} = -\frac{1}{2}kx_f^2 + \frac{1}{2}kx_i^2 = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2$$

The potential energy of this system is

$$U_s = \frac{1}{2}kx^2$$

What do you see from the above equations?

The work done on the object by the spring depends only on the initial and final position of the distorted spring.

Where else did you see this trend?

The gravitational potential energy, U_g

So what does this tell you about the elastic force?

A conservative force!!!

Monday, Mar. 30, 2009

PHYS 1441-002, Spring 2009 Dr. Jaehoon Yu