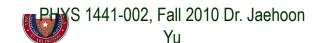
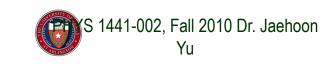
PHYS 1441 – Section 002 Lecture #3

Monday, Sept. 13, 2010 Dr. <mark>Jae</mark>hoon <mark>Yu</mark>


- Estimate and Order of Magnitude
- Dimensional Analysis
- Some Fundamentals
- One Dimensional Motion
 - Displacement
 - Speed and Velocity
 - Acceleration
 - Motion under constant acceleration

Today's homework is homework #2, due 10pm, Tuesday, Sept. 21!!


Announcements

- Homework registration
 - 75/80 registered
 - Of them only 63 submitted the first homework!
 - If you haven't registered yet, please do so ASAP.
- E-mail subscription
 - 64/80 subscribed!
 - A test message will be sent out later today.
 - Would like you to confirm by replying ONLY to me!!
 - Please check the "TO" address before sending the reply.
- 1st term exam
 - Non-comprehensive
 - Time: 1 2:20pm, Wednesday, Sept. 22
 - Coverage: Appendices A.1 A.8 and CH1.1 what we finish coming Monday, Sept. 20

Reminder: Special Problems for Extra Credit

- Derive the quadratic equation for yx²-zx+v=0
 5 points
- Derive the kinematic equation $v^2 = v_0^2 + 2a(x x_0)$ from first principles and the known kinematic equations \rightarrow 10 points
- You must <u>show your OWN work in detail</u> to obtain the full credit
 - Must be in much more detail than in the upcoming lecture note!!!
- Due Monday, Sept. 27

How to study for this course?

- Keep up with the class for comprehensive understanding of materials
 - Come to the class and participate in the discussions and problems solving sessions
 - Follow through the lecture notes
 - Work out example problems in the book yourself without looking at the solution
 - Have many tons of fun in the class!!!!!
- Keep up with the homework to put the last nail on the coffin
 - One can always input the answers as you solve problems. Do not wait till you are done with all the problems.
 - Form a study group and discuss how to solve problems with your friends, then work the problems out yourselves!
- Prepare for upcoming classes
 - Read the textbook for the material to be covered in the next class
- The extra mile
 - Work out additional problems in the back of the book starting the easiest problems to harder ones

Monday, Sept. 13, 2010

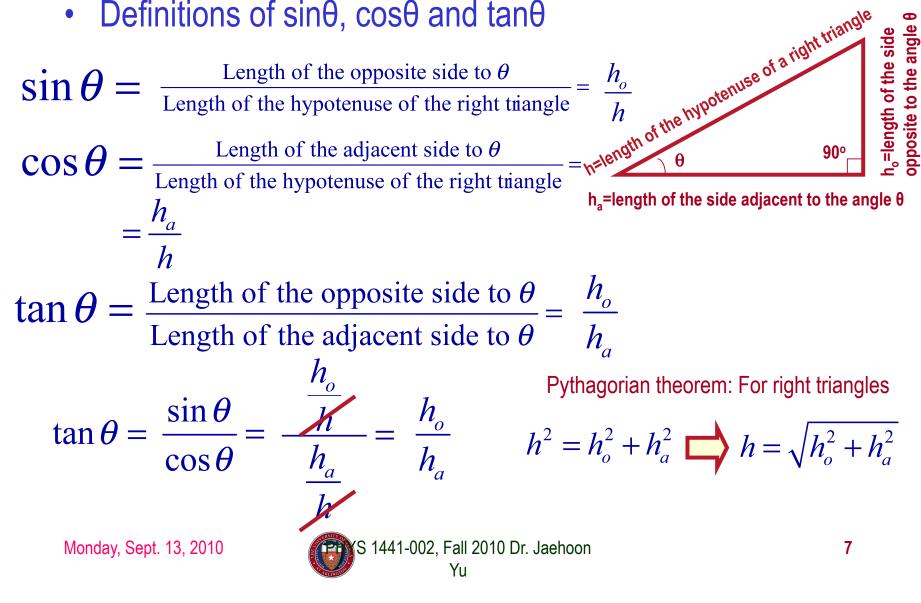
Phys 1441-002, Fall 2010 Dr. Jaehoon

How do we convert quantities from one unit to another?

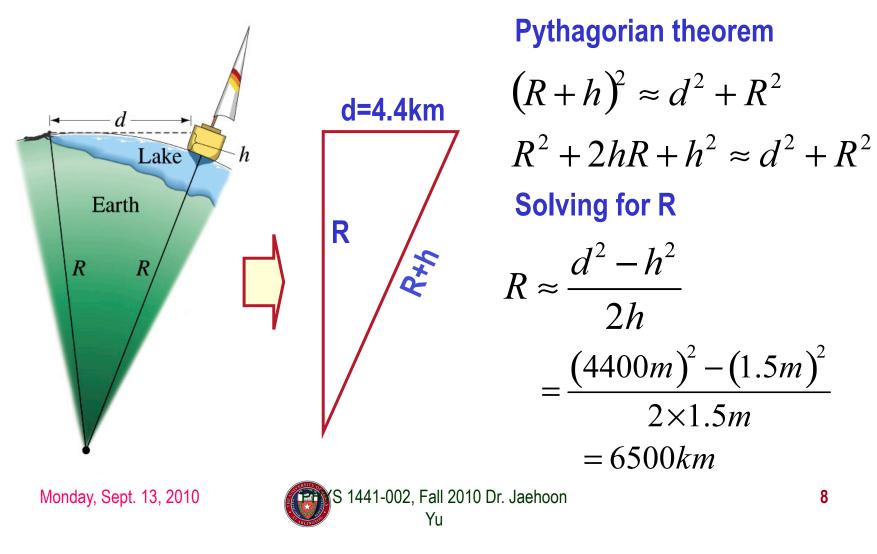
Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	m
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Monday, Sept. 13, 2010

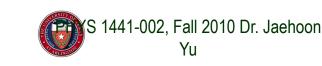

Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: 10³=1,000
 - Round up for Order of magnitude estimate; $8 \times 10^7 \sim 10^8$
 - Similar terms: "Ball-park-figures", "guesstimates", etc



Trigonometry Reminders

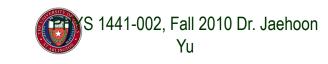
Definitions of $\sin\theta$, $\cos\theta$ and $\tan\theta$



Example for estimates using trig.. Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

Dimension and Dimensional Analysis

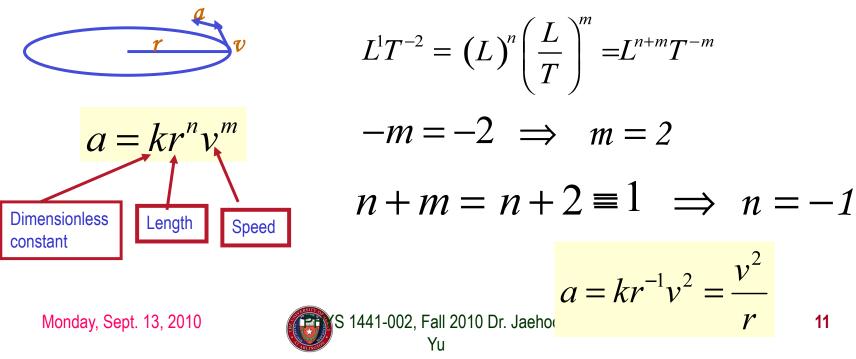
- A very useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - -Length (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are used as algebraic quantities: Can perform two algebraic operations; multiplication or division
- These symbols can be treated as variables in algebra
 - Can multiply or divide them out



Dimension and Dimensional Analysis

- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [\mathcal{L}]/[\mathcal{T}] = [\mathcal{L}]/[\mathcal{T}^{-1}]$
 - •Distance (L) traveled by a car running at the speed V in time T

 $\bullet_{\mathcal{L}} = \mathcal{V}^{\star}\mathcal{T} = [\mathcal{L}/\mathcal{T}]^{\star}[\mathcal{T}] = [\mathcal{L}]$


More general expression of dimensional analysis is using exponents: eg. [v]=[LⁿT^m] =[L][T⁻¹] where n = 1 and m = -1

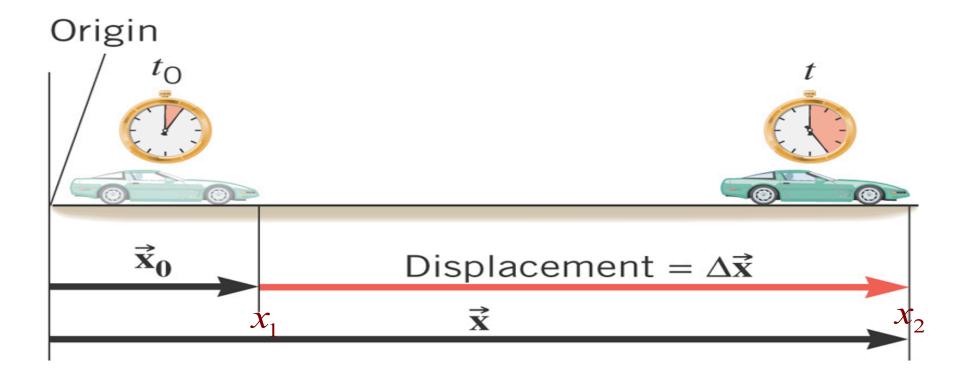
Examples

- Show that the expression [v] = [at] is dimensionally correct
 - Speed: [v] =L/T
 - Acceleration: [a] =L/T²
 - Thus, $[at] = (L/T^2)xT=LT^{(-2+1)} = LT^{-1} = L/T = [v]$

•Suppose the acceleration *a* of a circularly moving particle with speed v and radius *r* is proportional to r^n and v^m . What are *n* and *m*?

Some Fundamentals

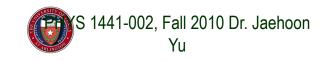
- <u>Kinematics</u>: Description of Motion without understanding the cause of the motion
- **Dynamics**: Description of motion accompanied with understanding the cause of the motion
- Vector and Scalar quantities:
 - **Scalar**: Physical quantities that require magnitude but no direction
 - Speed, length, mass, height, volume, area, magnitude of a vector quantity, etc
 - <u>Vector</u>: Physical quantities that require both magnitude and direction
 - Velocity, Acceleration, Force, Momentum
 - It does not make sense to say "I ran with velocity of 10miles/hour."
- Objects can be treated as point-like if their sizes are smaller than the scale in the problem
 - Earth can be treated as a point like object (or a particle) in celestial problems
 - Simplification of the problem (The first step in setting up to solve a problem...)
 - Any other examples?


Some More Fundamentals

- <u>Motions</u>:Can be described as long as the position is known at any given time (or position is expressed as a function of time)
 - Translation: Linear motion along a line
 - Rotation: Circular or elliptical motion
 - Vibration: Oscillation
- Space Dimensions
 - 0 dimension: A point
 - − 1 dimension: Linear drag of a point, resulting in a line →
 Motion in one-dimension is a motion on a straight line
 - 2 dimension: Linear drag of a line resulting in a surface
 - 3 dimension: Perpendicular Linear drag of a surface, resulting in a stereo object

Displacement, Velocity and Speed One dimensional displacement is defined as: $\Delta x \equiv x_f - x_i$ A vector quantity Displacement is the difference between initial and final potions of the motion and is <u>a vector quantity</u>. How is this different than distance? Unit? m The average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{x_f - x_i} = \frac{\Delta x}{\Delta x} \equiv \frac{\text{Displacement}}{\Delta x}$ Unit? **m**/s A vector quantity $t_f - t_i \Delta t$ Elapsed Time Displacement per unit time in the period throughout the motion Total Distance Traveled $v \equiv -$ The average speed is defined as: **Total Elapsed Time** Unit? m/s A scalar quantity S 1441-002, Fall 2010 Dr. Jaehoon Monday, Sept. 13, 2010 14

Yu

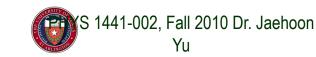

What is the displacement?

$$\Delta x = x_2 - x_1$$

How much is the elapsed time? $\Delta t =$

$$\Delta t = t - t_0$$

Monday, Sept. 13, 2010


Displacement, Velocity and Speed

One dimensional displacement is defined as:

 $\Delta x \equiv x_f - x_i$

Displacement is the difference between initial and final potions of the motion and is a vector quantity. How is this different than distance? Unit? m The average velocity is defined as: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} \equiv \frac{\text{Displacement}}{\text{Elapsed Time}}$ Unit? m/s Displacement per unit time in the period throughout the motion

The average speed is defined as: Unit? m/s $v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Elapsed Time}}$ Can someone tell me what the difference between speed and velocity is?

Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line X-axis

Let's have a +15m +5m +10m couple of motions -10m -15m -5m in a total time Total Displacement: $\Delta x \equiv x_i - x_i \equiv x_i - x_i = 0$ (*m*) interval of 20 sec. Average Velocity: $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} = \frac{0}{20} = 0(m/s)$ Total Distance Traveled: D = 10 + 15 + 5 + 15 + 10 + 5 = 60(m)Average Speed: $v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Elapsed Time}} = \frac{60}{20} = 3(m/s)$ S 1441-002, Fall 2010 Dr. Jaehoon 17 Monday, Sept. 13, 2010 Yu