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«  Components of the 2D Vector

*  Understanding the 2 Dimensional Motion
« 2D Kinematic Equations of Motion

*  Projectile Motion

«  Maximum Range and Height
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Abstract:

We hawve studied protein interaction which are central to adhesion formation, turnover and signaling
during cell migration in 2D cell cultures. In 2 D, we used non-linear one and two photon fluorescence
excitation microscopy in conjunction with correlation spectroscopy tools to detect proteins interacting
during focal adhesion assembly and disassembly. Paxillin, FAK and vinculin binding partners were
characterized using cross-raster image correlation spectroscopy (ccRICS) and provided maps of
molecular diffusion and binding dynamics from fluorescence fluctuations in time and space. Detecting
when and where these complexes form in the cell and gquantifying their stoichiometry is an important
goal of cell biology. Thus we developed the number and molecular brightness (N&B) method to
determine protein aggregate sizes from the fluorescence amplitude fluctuations. Two-color cross-NE&B
detects the presence of molecular complexes and their stoichiometry. We have demonstrated that focal
adhesions form in cell cultures in 2D by adding monomeric proteins at the growing edge and
disassemble by the detachment of large protein dusters. Studying these molecular interactions directly
in the tissue is technically challenging due to the spatial orientation and mobility of the cell in 2D. We
are developing the modulation tracking method (MT) to image cell protrusions in 3D collagen matrices
with nanometer and microsecond-millisecond resolution. The MT method uses a variant of circular
tracking and high frequency modulation of the laser beam. Using the MT method we can also perform
ccRICS and ccNE&EB with the orbital tracking technique and maintain focus on the cell protrusions while
they are moving in 2D. These dynamics methods in conjunction with the MT provide unparallieled tools
for image based tracking of compositionally heterogeneous complexes in viable cellular
microenvironment and can be applied in live animal models.

Refreshments will be served at 3:30p.m in the Physics Library




2D Coordinate Systems

» They make it easy and consistent to express locations or positions

 Two commonly used systems, depending on convenience, are
— Cartesian (Rectangular) Coordinate System
 Coordinates are expressed in (x,y)

— Polar Coordinate System
* Coordinates are expressed in distance from the origin ® and the angle measured
from the x-axis, 0(r,0)

* Vectors become a lot easier to express and compute

Yy How are Cartesian and
Polar coordinates related?
Vg o 5 (X1 ’y1)= (r1,61)
: x, = r,cos0 7 =\/(x12 + yﬁ)
0 W
y, = hsSIng,  tanf = —
> +¥X X

0(0,0) X
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Components and Unit Vectors

Coordinate systems are useful in expressing vectors in their components

(AA)

Ax = ‘z‘cosé

Ay Z‘A

sin @

Al= JAZ + A2
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Unit Vectors

Unit vectors are the ones that tells us the
directions of the components

Dimensionless
Magnitudes these vectors are exactly 1
Unit vectors are usually expressed in i, J, k or

- -5 -5

i, 1, k

 —d —_

So avector A can be A:Ax}’+Ay}° =‘A‘cos@?+‘A

sin6j
expressed as
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Examples of Vector Operations

Find the resultant vector which is the sum of A=(2.0§+2.0§) and B =(2.0#4.0j)

E=2’+§:(2.0?+ 2.0})+(2.0?—4.0}) } .
=(2.0+2.0)i +(2.0-40); =4.0i —2.0(m)

‘5‘ = \/(4.0)2 +(-2.0) 5

= tan —

—\16+4.0 =420 = 4.5(m) Cx

C _
' = tan™ 20 _ =-27°
4.0

Find the resultant displacement of three consecutive displacements:
dy=(15i+30j +12k)cm, dy=(23i+14j-5.0k)cm, and dy=(-13i+15§)cm

D=d+d+d= (15?+ 30 + 121?)+(23?+14}-5.0/?)+(—13?+15})
= (15+23-13)i+(30+14+15) j +(12 = 5.0)k = 25] +59,+7.0k(cm)
Magnitude ‘D‘: \/ 25) +(59)2 +(7.0)2 = 65(cm)
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2D Displacement

—

r = 1nitial position
r = final position

Displacement: A = ¢ _ ¢
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2D Average Velocity (T\

Average velocity is the
displacement divided by
the elapsed time.

- r—-r Ar
V = 9 =
l‘—tO At

Monday, Sept. 27, 2010 -3 S 1441-002, Fall 2010 Dr. Jaehoon 8

Yu




The instantaneous velocity indicates how fast the car
moves and the direction of motion at each ins}ant of time.

N ) t
Ar
_) 1 [ ] r
At—0 At
\9\
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2D Average Acceleration

= _VV,

Monday, Sept. 27, 2010 -:: S 1441-002, Fall 2010 Dr. Jaehoon

Yu




Displacement, Velocity, and Acceleration in 2-dim

* Displacement: A =5 — 7%
+ Average Velocity: |-~ Ar r,—r
Vv =" —
At tf — .
How is each of

° . ' these quantities

lnStantaneous C _ lim 22 defined in 1-D?

Velocity: Ar—0 At
+ Average ~ AV v, —v,

Acceleration “T At 1, —t
* |nstantaneous =

Acceleration:  [a= limZY

cceleration: a= lim-—
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Kinematic Quantities in 1D and 2D

Quantities 1 Dimension 2 Dimension
Displacement | AXx =X —X, | ar=p,—p,
. Ax  Xp=X | — Ar -1,
yVy = — = = — =
Average Velocity | V==~ vl B iy
. . Ax = ”
Inst. Velocity v, = lim — v = lim 27
At—0 At At—0 At
_AY, VeV [ Ay v —
a. = = = —
Average Acc. N o | CCATT
Ay = N
Inst. Acc. a, = lim — 2= lim 2
A0 At A—0 At
woncey, sepd What is the difference between 1D and 2D quantities? 1




A Motion in 2 Dimension

+v
'Uy
el =4
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This is a motion that could be viewed as two motions
combined into one. (superposition...)
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Motion in horizontal direction (x)
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Motion in vertical direction (y)

| v =v_+at
y Yo Y
Avy

Ll = =
y (v -+19)t

) - L
2
vi=v +2ay
) ay, Yy Yo Y
4v0v - | 2
- =v [+-al
- S 4 Yo , 4,
i
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A Motion in 2 Dimension

1y
1
a«\'
i = }
) ‘ i Gl
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Imagine you add the two 1 dimensional motions on the Ieft.
It would make up a one 2 dimensional motion on the right.
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Kinematic Equations in 2-Dim

x-component y-component

— Vv =v +at
Vx on_l_axt Y Yo Y

_1 _ 1
x-z(vx0+vx)t 3% 2(vy0+vy)t
v =v +2ax  V,=V, +2ay

Ax=v t+iat’? Ay=v t+7at
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Ex. A Moving Spacecraft

In the x direction, the spacecraft in zero-gravity zone has an initial velocity
component of +22 m/s and an acceleration of +24 m/s?. In the y direction, the
analogous quantities are +14 m/s and an acceleration of +12 m/s®. Find (a) x
and v,, (b) y and v,, and (c) the final velocity of the spacecraft at time 7.0 s.

L',',
@‘ v 4
ﬁ - - 7 e
P '\
’/
b 4
’
//
V4
7
AUOV //
7
s Vor
' o +
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How do we solve this problem?

Visualize the problem =» Draw a picture!

Decide which directions are to be called positive (+) and
negative (-).

Write down the values that are given for any of the five
kinematic variables associated with each direction.

Verify that the information contains values for at least
three of the kinematic variables. Do this for x and y
separately. Select the appropriate equation.

When the motion is divided into segments, remember
that the final velocity of one segment is the initial velocity
for the next.

Keep in mind that there may be two possible answers to
a kinematics problem.

Monday, Sept. 27, 2010

@2 S 1441-002, Fall 2010 Dr. Jaghoon 19



Ex. continued

In the x direction, the spacecraft in a zero gravity zone has an initial velocity
component of +22 m/s and an acceleration of +24 m/s?. In the y direction, the
analogous quantities are +14 m/s and an acceleration of +12 m/s. Find (a) x
and v,, (b) y and v,, and (c) the final velocity of the spacecraft at time 7.0 s.

X

d

V

V

{

X X 0X
2 +24.0 m/s? 2 +22.0 m/s 70s
y a, V, Voy t
? +12.0 m/s? ? +14.0 m/s 70s
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First, the motion In x-direciton...

X a, V, V., t
? +24.0 m/s? ? +22 m/s 70s

1 2
Ax :VOXt + Eaxt

(22m/5)(7.0 5)+%(24m/s?)(7.0 5) = +740 m
V.=V, + axt

= (22m/s) - (24m/sz)(7.0 s) =+190m/s
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Now, the motion in y-direction...

y a, V, Voy t
? +12.0 m/s? ? +14 m/s 70s

Ay=v t+iat
= (14m/s)(7.0 )+ 1(12m/s?)(7.0 5) =+390 m

v =V +al
Y oy Y

(14m/s) + (12m/sz)(7.0 s) = +98m/s
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The final velocity...

Vv
v, = 98 m/s

0

v_=190m/s

Z\/(19Om/s) (98m/s)2 =210m/s
A vector can be fully described when

6 = tan~' (98/1 90) =2"7"  the magnitude and the direction are

given Any other way to describe it?
Yes, you are right! Using - — /
components and unit vectors!! Y = V. l TV ] (1901 + 98] ) my/s
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If we visualize the motion...

Y
7
v, = 98 m/s v//
— . i “. ”
i f I”9
X
v, = 190 m/s

+X



What is a Projectile Motion?

* A 2-dim motion of an object under

the gravitational acceleration with th

following assumptions

— Free fall acceleration, g, is constant
over the range of the motion
¢ €=-9.87 (m/5)
ea_= Om/s2 and 4, = —9.8m/s2
— Air resistance and other effects are
negligible
A motion under constant

acceleration!!!! =» Superposition of
two motions

— Horizontal motion with constant velocity ( no
acceleration ) Vi = V.,

y

e | vy
Y

[ ]

— Vertical motion under constant acceleration ( g)
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Vi =V + ayt =V, + (_9.8)t3n

X
=

a=g

\\
--}Vx

' Projectile

motion

= =

\
V y \v

|
|
|
|

\

m=p-Vy
Vertical
fall
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