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PHYS 1441 – Section 002 
Lecture #22 

Wednesday, Dec. 1, 2010 
Dr. Jaehoon Yu 

•  Rotational Kinetic Energy  
•  Angular Momentum 
•  Angular Momentum Conservation 
•  Similarities Between Linear and Rotational 

Quantities 
•  Conditions for Equilibrium 



Announcements 
•  The Final Exam 

–  Date and time: 11am, Monday Dec. 13 
–  Place: SH103 
–  Comprehensive exam 

•  Covers from CH1.1 – what we finish Wednesday, Dec. 8 
•  Plus appendices A.1 – A.8 
•  Combination of multiple choice and free response 

problems  
•  Bring your Planetarium extra credit sheet to the class next 

Wednesday, Dec. 8, with your name clearly marked on 
the sheet! 

•  Colloquium this today 
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Rotational Kinetic Energy 
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is?  

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is 

Since moment of Inertia, I, is defined as 

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is 

ri 
mi 

θ	



O x 

y vi 

The above expression is simplified as 
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Example for Moment of Inertia 
In a system of four small spheres as shown in the figure, assuming the radii are negligible 
and the rods connecting the particles are massless, compute the moment of inertia and 
the rotational kinetic energy when the system rotates about the y-axis at angular speed w. 

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is 

Thus, the rotational kinetic energy is  

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O. 

x 

y 

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible. Why are some 0s? 

M M l l 

m 

m 

b 

b 
O = mi

i
∑ ri

2   = Ml2 = 2Ml2

=
1
2
Iω 2=

1
2
2Ml2( )ω 2 = Ml2ω 2

= mi
i
∑ ri

2
  = Ml2 = 2 Ml2 + mb2( ) =

1
2
Iω 2=

1
2
2Ml2 + 2mb2( )ω 2= Ml2 + mb2( )ω 2

  +Ml2   +m ⋅02   +m ⋅02

  +Ml2   +mb2  +mb2
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Kinetic Energy of a Rolling Sphere 

Since vCM=Rω 

Let’s consider a sphere with radius R 
rolling down the hill without slipping. 

R 

h 
q 

vCM 

ω	



Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill 

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out? 
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Example for Rolling Kinetic Energy 
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method. 

Gravitational Force, 

Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque 

M 
h 

θ 

We know that   

What are the forces involved in this motion? 

Mg 

f 

Newton’s second law applied to the CM gives 
Frictional Force, Normal Force 

n 

We 
obtain  

 Substituting f in 
dynamic equations 

= fR
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Work, Power, and Energy in Rotation 
Let’s consider the motion of a rigid body with a single external 
force F exerting on the point P, moving the object by Δs. 
The work done by the force F as the object rotates through 
the infinitesimal distance Δs=rΔθ is  

What is Fsinϕ? The tangential component of the force F. 

ΔW

Since the magnitude of torque is rFsinϕ, 

F 
φ	



O 
r Δθ	


Δs 

What is the work done by 
radial component Fcosϕ? 

Zero, because it is perpendicular to the 
displacement. 
ΔW

The rate of work, or power, becomes 
How was the power 
defined in linear motion? 

The rotational work done by an external force 
equals the change in rotational Kinetic energy.  

The work put in by the external force then 

  = F

⋅ Δs


= τΔθ

=
ΔW
Δt   

=
τ  Δθ
Δt

= I Δω
Δt

⎛
⎝⎜

⎞
⎠⎟

ΔW

= rF sinφ( )Δθ

= F sinφ( )rΔθ

 τΔθ∑ = IωΔω
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Angular Momentum of a Particle 
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used the linear momentum to solve physical problems 
with linear motions, the angular momentum will do the same for rotational motions. 

L = mvr = mr2ϖ = Iϖ

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v 

  L

≡ r

× p
The angular momentum L of this 

particle relative to the origin O is  

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum. 

What is the unit and dimension of angular momentum?  

Note that L depends on origin O.  Why?  Because r changes 
The direction of L is +z. What else do you learn?  

Since p is mv, the magnitude of L becomes 

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim. 

z 

x 

y 
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Angular Momentum of a System of Particles 
The total angular momentum of a system of particles about some point 
is the vector sum of the angular momenta of the individual particles 

  L

=

Since the individual angular momentum can change, the total angular 
momentum of the system can change. 

  
τ


ext∑ =
ΔL


Δt

Thus the time rate change of the angular 
momentum of a system of particles is equal to 
only the net external torque acting on the system 

Let’s consider a two particle 
system where the two exert 
forces on each other. 

Since these forces are the action and reaction forces with 
directions lie on the line connecting the two particles, the 
vector sum of the torque from these two becomes 0. 

Both internal and external forces can provide torque to individual particles.  However, 
the internal forces do not generate net torque due to Newton’s third law. 

   +L


2   +L


n  = L


i∑   L


1

τ ext∑ =
ΔLz
Δt

=
Δ Iϖ( )
Δt

=
IΔϖ
Δt

= IαFor a rigid body, the external torque is written   

  
F


∑ =
Δ p


Δt
Just 
like 
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Example for Rigid Body Angular Momentum 
A rigid rod of mass M and length l is pivoted without friction at its center.  Two particles of mass 
m1 and m2 are attached to either end of the rod.  The combination rotates on a vertical plane 
with an angular speed of w. Find an expression for the magnitude of the angular momentum. 

The moment of inertia of this system is 

 First compute the 
net external torque 

m1 g 

x 

y 

O 

l 

m1 

m2 

θ	

 m2 g 

If m1 = m2, no angular 
momentum because the net 
torque is 0.  
If θ=+/-π/2, at equilibrium 
so no angular momentum.	



Find an expression for the magnitude of the angular acceleration of the 
system when the rod makes an angle θ with the horizon. 

Thus α 
becomes 

  
=

1
12

Ml2 +
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Conservation of Angular Momentum 
Remember under what condition the linear momentum is conserved? 

Linear momentum is conserved when the net external force is 0. 

Three important conservation laws 
for isolated system that does not get 
affected by external forces 

Angular momentum of the system before and 
after a certain change is the same. 

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 
resultant external torque acting on the system is 0.  

What does this mean? 

Mechanical Energy 

Linear Momentum 

Angular Momentum 

  L

=

   
F


∑ = 0 =
Δ p


Δt

  

ΔL


Δt
=
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Example for Angular Momentum Conservation 
 A star rotates with a period of 30 days about an axis through its center.  After the star 
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron star of radius 3.0km.  Determine the period of rotation of the neutron star.   

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller. 

Let’s make some assumptions: 1.  There is no external torque acting on it 
2.  The shape remains spherical 
3.  Its mass remains constant 

The angular speed of the star with the period T is 

Using angular momentum 
conservation 

Thus 
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Similarity Between Linear and Rotational Motions 
All physical quantities in linear and rotational motions show striking similarity. 

Quantities Linear Rotational 
Mass Mass Moment of Inertia 

Length of motion Distance Angle     (Radian) 
Speed 

Acceleration 
Force Force Torque 
Work Work Work 
Power 

Momentum 
Kinetic Energy Kinetic Rotational 

  F

= ma


  τ

= Iα


  P = F

⋅ v


  p

= mv


  L

= Iω



