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Announcements

* The Final Exam

— Date and time: 11am, Monday Dec. 13
— Place: SH103

— Comprehensive exam
* Covers from CH1.1 — what we finish Wednesday, Dec. 8
* Plus appendices A.1-A.8

 Combination of multiple choice and free response
problems

* Bring your Planetarium extra credit sheet to the class next
Wednesday, Dec. 8, with your name clearly marked on
the sheet!

* Colloquium this today
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Physics Department
The University of Texas at Arlington

COLLOQUIUM

Undo the Size Effect in Semiconductor
Nanostructures

Dr. Shengbai Zhang

Rensselaer Polytechnic Institute
4:00p.m Wednesday December 1, 2010
At SH Rm 101

Abstract:

It is a textbook example that when the size of a semiconductor is reduced, band gap will
increase due to the increased kinetic energy of the electron and hole. However, first-principles
calculations reveal that there should also be a guantum boundary effect, which can drastically
change the band gap to the extent to completely erase the size effect. The boundary effect
coriginates, for instance. from different surface passivations: While a thin silicon film passivated
by hydrogen shows a full guantum size effect, the effect diminishes for film size as small as two
nanometers when some of the hydrogen atoms are replaced by NH ligands. I will introduce the
concept of zero confinement state for semiconductors to elucidate why it is possible to remove
the seemingly universal gquantum size effect. This finding could of course be highly desirable for
certain electronic applications. The guantum boundary effect can also manifest itself as a
symmetry effect. Taking the fully hydrogenated zigzag graphene nanornibbon as an example, I
will show that due to the underlying. but hidden. wriple-period Kekulé symmetry. the band gap
will change by a factor of three if one slides one side of the passivation with respect to the other
side by one atomic unit, regardless the width of the ribbon. This creates two edge polymorphs of
practically identical stability., which could be wvery challenging for fabricating
nancoribbons with well-defined band gap. as well as offering new opportunities for novel
electronic applications.
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Rotational Kinetic Energy

What do you think the kinetic energy of a rigid object

that is undergoing a circular motion is?

o 1 1
Kinetic energy of a masslet, m, K,=—=my; =—mr’w’

> moving at a tangential speed, v, is
Since a rigid body is a collection of masslets, the total kinetic energy of the

rigid object is 1 1
_ 2,2 _ 2 1.2
K= 2 K=2Ymrio* = 3 my
z' i i

:

2
Since moment of Inertia, I, is definedas = Zmi’”,-

l

1

The above expression is simplifiedas K = — i (gz
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Example for Moment of Inertia

In a system of four small spheres as shown in the figure, assuming the radii are negligible
and the rods connecting the particles are massless, compute the moment of inertia and
the rotational kinetic energy when the system rotates about the y-axis at angular speed w.

y
é Since the rotation is about y axis, the moment of
inertia about y axis, I, is
b Y
@ ] 0 ] 9/, X I:Zml.rf: MI? + M +m-0° +m-0" = 2MI°
b i
This is because the rotation is done about y axis,

and the radii of the spheres are negligible.

1

?
? Why are some 0s”
. - - . 2 1 2 2 2 2
Thus, the rotational kinetic energy is K= 5160 = 5(2M1 )0) = MIl"®

Find the moment of inertia and rotational kinetic energy when the system rotates on
the x-y plane about the z-axis that goes through the origin O.

I =3 mr’= M3 MI? +mb*mb'=2(MP +mb*) K, = %Ia)zz %(2Mz2 +2mb” )= (MP +mb’ )’
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Kinetic Energy of a Rolling Sphere

Let’s consider a sphere with radius R
rolling down the hill without slipping.

1 1
K= EJCMao2+5J\4sz2
Y o1
= l[CM (VCM +_MVE‘M
Since v, =RW 2 R ) 2
— 1 (ICM + M\Vz
Y 2 CcM
2 R )
What is the speed of the Since the kinetic energy at the bottom of the hill must
CM in terms of known be equal to the potential energy at the top of the hill
quantities and how do you K= 1(1 s M}(%M = Mgh
find this out? 2\ R

2gh

cM —
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Example for Rolling Kinetic Energy

For solid sphere as shown in the figure, calculate the linear speed of the CM at the
bottom of the hill and the magnitude of linear acceleration of the CM. Solve this problem
using Newton’s second law, the dynamic method.

What are the forces involved in this motion?

f / g Gravitational Force, Frictional Force, Normal Force
h Newton’s second law applied to the CM gives
DA X ) F.=Mgsin6-f =Ma,,

ZFy =n—MgcosO =

Since the forces Mg and n go through the CM, their moment arm is 0 T = fR -] «
and do not contribute to torque, while the static friction fcauses torque M M

“ MR
We know that V\tl)? | P Ieu@ _ s ag, ) _2 M,
5 obtain R R R 5
I, = gMR2 5
Substituting £in Mgsin = 7 M, dey ==gsind
a., =Ra dynamic equations 5 7
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Work, Power, and Energy in Rotation

Let's consider the motion of a rigid body with a single external
force Fexerting on the point P, moving the object by As.

The work done by the force #as the object rotates through
the infinitesimal distance As=rA8 is

AW=F-As = (Fsing)rA0

What is #sind?  The tangential component of the force .

What is the work done by Zero, because it is perpendicular to the
radial component Fcos¢? displacement.

Since the magnitude of torque is r#sing, AW = (l”F Sin(P)AQ =TA6

AW A How was the power
P === =0 Gefined in i on?
At v efined in linear motion”

The rotational work done by an external force ZT: [ I( Aa)) :> Y A0 = loAw

The rate of work, or power, becomes

equals the change in rotational Kinetic energy. At
The work put in by the external force then AW = % Iy _% Iw?
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Angular Momentum of a Particle

If you grab onto a pole while running, your body will rotate about the pole, gaining
angular momentum. We've used the linear momentum to solve physical problems
with linear motions, the angular momentum will do the same for rotational motions.

z

fl=r><p

m

What else do you learn?

y

Let's consider a point-like object ( particle) with mass m located
at the vector location rand moving with linear velocity v

The angular momentum £ of this - —
particle relative to the origin O is L=rxX H

What is the unit and dimension of angular momentum?  kg-m’/s [MLT]

Note that £ depends on origin O. Why?  Because rchanges
The direction of L is +z.

Since pis mv, the magnitude of £ becomes L = mvr = mr’® = [@

What do you learn from this?  If the direction of linear velocity points to the origin of
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Angular Momentum of a System of Particles

The total angular momentum of a system of particles about some point
Is the vector sum of the angular momenta of the individual particles

Since the individual angular momentum can change, the total angular

momentum of the system can change.

Both internal and external forces can provide torque to individual particles. However,
the internal forces do not generate net torque due to Newton’s third law.

Let’s consider a two particle ~ Since these forces are the action and reaction forces with
system where the two exert  directions lie on the line connecting the two particles, the
forces on each other. vector sum of the torque from these two becomes 0.

Thus the time rate change of the angular A . -
- L | Just A
momentum of a system of particles is equal to E Texr = ——| Jike ZF - =p

only the net external torque acting on the system At Al
For a rigid body, the external torque is written 2 r = AL, _ A(l o ) _ IAD — I
Wednesday, Dec. 1, 2010 @ s 1141002 Fal 200 A At At

Yu




Example for Rigid Body Angular Momentum

Arigid rod of mass ¢ and length [is pivoted without friction at its center. Two particles of mass
m, and m, are attached to either end of the rod. The combination rotates on a vertical plane
with an angular speed of w. Find an expression for the magnitude of the angular momentum.

y The moment of inertia of this system is
/\mg [ =1,,+1,+I, :iM12+%mllz+%m212

7 \e>lm2:g :ﬁ(1 jlz ol

1

TI Find an expression for the magnitude of the angular acceleration of the

m, g system when the rod makes an angle 6 with the horizon.
If m, = m,, no angular First compute the 7, =m,g L cos@ t1,=-m,g icosé?
momentum because the net net external torque 2 2
torque is 0. I =141, = glcongml —m,)

If =+/—1/2, at equilibrium

so no angular momentum. ;(m1 —m, )glcos® 2 (m, —m,)cosO g

Thus G (04 — zfext = 12 1 1 l
7 L Ry Vs —M+m +m j
becomes oy raizoionr 4 (3 A +m2) (3 T
$ 2 Yu
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Conservation of Angular Momentum

Remember under what condition the linear momentum is conserved'?

Ap
Linear momentum is conserved when the net external force is 0. ZF 0= AIZ

—_—

p = const

By the same token, the angular momentum of a system Z;L_* _ AL L
is constant in both magnitude and direction, if the N =0
resultant external torque acting on the system is 0.

z —const

\What does this mean?  Angular momentum of the system before and
after a certain change is the same.

[_:Z. = Z ;= constant

Three important conservation laws K, +U, =K, +U,  Mechanical Energy

for isolated system that does notget 7 — B, Linear Momentum
affected by external forces o
L, =L, Angular Momentum

AR S 1441 -002, Fall 2010 Dr. Jaehoon 12

f_ * K

Wednesday, Dec. 1, 2010



Example for Angular Momentum Conservation

A star rotates with a period of 30 days about an axis through its center. After the star
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x10*km, collapses
into a neutron star of radius 3.0km. Determine the period of rotation of the neutron star.

What is your guess about the answer? The period will be significantly shorter,
because its radius got smaller.

Let's make some assumptions: 1. There is no external torque acting on it
2. The shape remains spherical
3. Its mass remains constant

Using angular momentum L, =L,
conservation T = ]fwf

2T
The angular speed of the star with the period T is = T

1o,  mr’ 2w

1, _mr; T

l

Thus a)f =

=27 _(7 3.0 Y. 304 27%10°d 0.23

== _ A R L S I avs = 2.7 X ays = 0.23s

4 2 (1.0><104 Y g
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Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show striking similarity.

Quantities Linear Rotational
Mass Mass Moment of Inertia
M [ =mr’
Length of motion | Distance L Angle @(Radian)
Speed v =i—: w=AA—f
Acceleration a=2 a="2
Force Force  F = ma Torque ;: ]_&
Work Work W=F.d |Work W =176
Power P=F-v P=1t0
Momentum ; = mv L=1Iw

. - ) . B 1 5
Kinetic Energy | Kinetic & =3

, [,
Rotational &x=71@
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