## PHYS 1444 – Section 003 Lecture #7

Tuesday, Sept. 13, 2011 Dr. Jaehoon Yu

- Chapter 22 Gauss's Law
  - Gauss' Law
  - Gauss' Law with many charges
  - What is Gauss' Law good for?
- **Chapter 23 Electric Potential** •
  - **Electric Potential Energy**
  - **Electric Potential**

Today's homework is homework #4, due 10pm, Tuesday, Sept. 20!!



#### Announcements

- Quiz #2
  - Thursday, Sept. 15
  - Beginning of the class
  - Covers: CH21.1 to what we cover today (CH23.1?)
- Reading assignments
  - CH22.4
- Colloquium tomorrow
  - 4pm, SH101
  - UTA Physics Faculty Research Expo



#### Physics Department The University of Texas at Arlington <u>COLLOQUIUM</u>

#### **Physics Faculty Research Expo 1**

Wednesday September, 2011 4:00 p.m. Rm. 101SH

#### SPEAKERS:

Dr. Wei Chen "Nanotechnology for Healthcare and Homeland Security"

> Dr. Andrew White "International Linear Collider"

Dr. Muhammad Huda "Materials discovery by design: A Theoretical approach"

> Dr. Alex Weiss "Positron Spectroscopy of Surfaces"

Dr. Andrew Brandt "A Very first Look at Research Opportunities in ATLAS and ATLAS forward proton upgrade"

Refreshments will be served at 3:30 p.m. in the Physics Library

Tuesday, Sept. 13, 2011

PHYS 1444-003, Fail 2011 Dr. Jaehoon

## Generalization of the Electric Flux

- The field line starts or ends only on a charge.
- Sign of the net flux on the surface A<sub>1</sub>?
  - The net outward flux (positive flux)
- How about A<sub>2</sub>?
  - Net inward flux (negative flux)
- What is the flux in the bottom figure?
  - There should be a net inward flux (negative flux) since the total charge inside the volume is negative.
- The net flux that crosses an enclosed surface is proportional to the total charge inside the surface. → This is the crux of Gauss' law.





-20

#### Gauss' Law

- The precise relationship between flux and the enclosed charge is given by Gauss' Law  $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_0}$ 
  - $\epsilon_0$  is the permittivity of free space in the Coulomb's law
- A few important points on Gauss' Law
  - Freedom to choose!!
    - The integral is performed over the value of **E** on a closed surface of our choice in any given situation.
  - Test of existence of electrical charge!!
    - The charge Q<sub>encl</sub> is the net charge enclosed by the arbitrary closed surface of our choice.
  - Universality of the law!
    - It does NOT matter where or how much charge is distributed inside the surface.
  - The charge outside the surface does not contribute to  $Q_{encl}$ . Why?
    - The charge outside the surface might impact field lines but not the total number of lines entering or leaving the surface





- Let's consider the case in the above figure.
- What are the results of the closed integral of the Gaussian surfaces A<sub>1</sub> and A<sub>2</sub>?

- For A<sub>1</sub> 
$$\oint \vec{E} \cdot d\vec{A} = \frac{+q}{\varepsilon_0}$$
  
- For A<sub>2</sub>  $\oint \vec{E} \cdot d\vec{A} = \frac{-q'}{\varepsilon_0}$   
Tuesday, Sept. 13, 2011  $\int \vec{E} \cdot d\vec{A} = \frac{-q'}{\varepsilon_0}$   
Tuesday, Sept. 13, 2011  $\int \vec{E} \cdot d\vec{A} = \frac{\varphi}{\varepsilon_0}$ 

## Coulomb's Law from Gauss' Law

- Let's consider a charge Q enclosed inside our imaginary gaussian surface of sphere of radius r.
  - Since we can choose any surface enclosing the charge, we choose the simplest possible one! <sup>(C)</sup>
- The surface is symmetric about the charge.
  - What does this tell us about the field E?
    - Must have the same magnitude (uniform) at any point on the surface
    - Points radially outward / inward parallel to the surface vector dA.
- The gaussian integral can be written as  $\oint \vec{E} \cdot d\vec{A} = \oint E dA = E \oint dA = E \left(4\pi r^2\right) = \frac{Q_{encl}}{\varepsilon_0} = \frac{Q}{\varepsilon_0} \quad \text{Solve for E} \quad E = \frac{Q}{4\pi \varepsilon_0 r^2}$ Electric Field of

Coulomb's Law



# Gauss' Law from Coulomb's Law

- Let's consider a single static point charge Q surrounded by an imaginary spherical surface.
- Coulomb's law tells us that the electric field at a spherical surface is  $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
- Performing a closed integral over the surface, we obtain

$$\oint \vec{E} \cdot d\vec{A} = \oint \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r} \cdot d\vec{A} = \oint \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} dA$$
$$= \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \oint dA = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} (4\pi r^2) = \frac{Q}{\varepsilon_0}$$
Tuesday, Sept. 13, 2011   
Tuesday, Sept. 14, 2011   
Tuesday, Se

## Gauss' Law from Coulomb's Law Irregular Surface

- Let's consider the same single static point charge Q surrounded by a symmetric spherical surface A<sub>1</sub> and a randomly shaped surface A<sub>2</sub>.
- What is the difference in the number of field lines due to the charge Q, passing through the two surfaces?
  - None. What does this mean?
    - The total number of field lines passing through the surface is the same no matter what the shape of the enclosed surface is.

A2

- So we can write:  $\oint_{A_1} \vec{E} \cdot d\vec{A} = \oint_{A_2} \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$
- What does this mean?
  - The flux due to the given enclosed charge is the same no matter what the shape of the surface enclosing it is.  $\rightarrow$  Gauss' law,  $\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$ , is valid for any surface surrounding a single point charge Q.

### Gauss' Law w/ more than one charge

- Let's consider several charges inside a closed surface.
- For each charge, Q<sub>i</sub>, inside the chosen closed surface,

$$\oint \vec{E}_i \cdot d\vec{A} = \frac{Q_i}{\varepsilon_0}$$
What is  $E_i$ ?
The electric field produced by  $Q_i$  alone!

 Since electric fields can be added vectorially, following the superposition principle, the total field E is equal to the sum of the fields due to each charge  $\vec{E} = \sum \vec{E_i}$  and any external field. So

$$\oint \vec{E} \cdot d\vec{A} = \oint \left(\vec{E}_{ext} + \sum \vec{E}_i\right) \cdot d\vec{A} = \frac{\sum Q_i}{\mathcal{E}_0} = \frac{Q_{encl}}{\mathcal{E}_0}$$
The total enclosed charge!

• The value of the flux depends on the charge enclosed in the surface!! 

Gauss' law.



## So what is Gauss' Law good for?

- Derivation of Gauss' law from Coulomb's law is only valid for <u>static electric charge</u>.
- Electric field can also be produced by changing magnetic fields.
  - Coulomb's law cannot describe this field while Gauss' law is still valid
- Gauss' law is more general than Coulomb's law.
  - Can be used to obtain electric field, forces or obtain charges

Gauss' Law: Any **<u>differences</u>** between the input and output flux of the electric field over any enclosed surface is due to the charge within that surface!!!



## Solving problems with Gauss' Law

- Identify the symmetry of the charge distributions
- Draw the appropriate gaussian surface, making sure it passes through the point you want to know the electric field
- Use the symmetry of charge distribution to determine the direction of E at the point of gaussian surface
- Evaluate the flux
- Calculate the enclosed charge by the gaussian surface
  - Ignore all the charges outside the gaussian surface
- Equate the flux to the enclosed charge and solve for E



## Example 22 – 2

**Flux from Gauss' Law**: Consider two gaussian surfaces,  $A_1$  and  $A_2$ , shown in the figure. The onlycharge present is the charge +Q at the center of – surface  $A_1$ . What is the net flux through each – surface  $A_1$  and  $A_2$ ?

- The surface A<sub>1</sub> encloses the charge +Q, so from Gauss' law we obtain the total net flux
- The surface A<sub>2</sub> the charge, +Q, is outside the surface, so the total net flux is 0.





 $\oint \vec{E} \cdot d\vec{A} = \frac{+Q}{\varepsilon_0}$ 

 $\oint \vec{E} \cdot d\vec{A} = \frac{0}{\varepsilon_0} = 0$ 

### Example 22 – 6

Long uniform line of charge: A very long straight wire possesses a uniform positive charge per unit length,  $\ell$ . Calculate the electric field at points near but outside the wire, far from the ends.



- Which direction do you think the field due to the charge on the wire is?
  - Radially outward from the wire, the direction of radial vector **r**.
- Due to cylindrical symmetry, the field is the same on the gaussian surface of a cylinder surrounding the wire.
  - The end surfaces do not contribute to the flux at all. Why?
    - Because the field vector **E** is perpendicular to the surface vector d**A**.



## **Electric Potential Energy**

- Concept of energy is very useful solving mechanical problems
- Conservation of energy makes solving complex problems easier.
- When can the potential energy be defined?
  - Only for a conservative force.
  - The work done by a conservative force is independent of the path. What does it only depend on??
    - The difference between the initial and final positions
  - Can you give me an example of a conservative force?
    - Gravitational force
- Is the electrostatic force between two charges a conservative force?
  - Yes. Why?
  - The dependence of the force to the distance is identical to that of the gravitational force.
    - The only thing matters is the direct linear distance between the object not the path.



### **Electric Potential Energy**

- How would you define the change in electric potential energy  $U_b U_a$ ?
  - The potential gained by the charge as it moves from point a to point b.
  - The negative work done on the charge by the electric force to move it from a to b.
  - Let's consider an electric field between two parallel plates w/ equal but opposite charges
    - The field between the plates is uniform since the gap is small and the plates are infinitely long...
  - What happens when we place a small charge, +q, on a point at the positive plate and let go?
    - The electric force will accelerate the charge toward negative plate.
    - What kind of energy does the charged particle gain?
      - Kinetic energy





## **Electric Potential Energy**

- What does this mean in terms of energies?
  - The electric force is a conservative force.
  - Thus, the mechanical energy (K+U) is conserved under this force.
  - The charged object has only the electric potential energy at the positive plate.
  - The electric potential energy decreases and
  - Turns into kinetic energy as the electric force works on the charged object, and the charged object gains speed.
- Point of greatest potential energy for
  - Positively charged object
  - Negatively charged object

Tuesday, Sept. 13, 2011





PE=U

KE= 0

ME=U

E

Low

potential

 $\left( \right)$ 

K

U+K

### **Electric Potential**

- How is the electric field defined?
  - Electric force per unit charge: F/q
- We can define electric potential (potential) as
  - The electric potential energy per unit charge
  - This is like the voltage of a battery...
- Electric potential is written with a symbol V
  - If a positive test charge q has potential energy  $U_a$  at a point *a*, the electric potential of the charge at that point is  $U_a$

$$V_a = \frac{U_a}{q}$$



#### **Electric Potential**

- Since only the difference in potential energy is meaningful, only the potential difference between two points is measurable
- What happens when the electric force does "positive work"?
  - The charge gains kinetic energy
  - Electric potential energy of the charge decreases
- Thus the difference in potential energy is the same as the negative of the work,  $W_{ba}$ , done on the charge by the electric field to move the charge from point a to b.
- The potential difference  $V_{ba}$  is

$$V_{ba} = V_b - V_a = \frac{U_b - U_a}{q} = \frac{-W_{ba}}{q}$$

- Electric potential is independent of the test charge!!

## A Few Things about Electric Potential

- What does the electric potential depend on?
  - Other charges that creates the field
  - What about the test charge?
    - No, the electric potential is independent of the test charge •
    - Test charge gains potential energy by existing in the potential created by other charges
- Which plate is at a higher potential?
  - Positive plate. Why?
    - Since positive charge has the greatest potential energy on it.
  - What happens to the positive charge if it is let go?
    - It moves from higher potential to lower potential •
  - How about a negative charge?
    - Its potential energy is higher on the negative plate. Thus, it moves from negative • plate to positive. Potential difference is the same.
- The unit of the electric potential is Volt (V).
- From the definition, 1V = 1J/C. Tuesday, Sept. 13, 2011

1444-003, Fall 2011 Dr. Jaehoon Yu



Zero point of electric potential can be chosen arbitrarily.

Often the ground, a conductor connected to Earth, is zero.

## Example 23 – 1

A negative charge: Suppose a negative charge, such as an electron, is placed at point *b* in the figure. If the electron is free to move, will its electric potential energy increase or decrease? How will the electric potential change?

- An electron placed at point *b* will move toward the positive plate since it was released at its highest potential energy point.
- It will gain kinetic energy as it moves toward left, decreasing its potential energy.
- The electron, however, moves from the point *b* at a lower potential to point *a* at a higher potential.  $\Delta V = V_a V_b > 0$ .
- This is because the potential is generated by the charges on the plates not by the electron.



