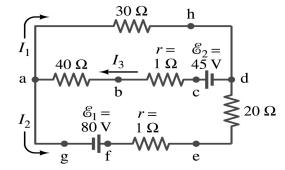
PHYS 1444 – Section 003 Lecture #16

Thursday, Oct. 27, 2011 Dr. <mark>Jae</mark>hoon **Yu**

- Magnetism and Magnetic Field
- Electric Current and Magnetism
- Magnetic Forces on Electric Current
- About Magnetic Field
- Magnetic Forces on a Moving Charge
- Charged Particle Path in a Magnetic Field

Announcements


- Midterm exam results
 - Class average: 73/110
 - Equivalent to 66.4/100
 - How did you do last time?: 59.5/100
 - Top score: 99/110
- Mid-term grade discussion
 - Today in the bottom half of the class
 - Come to my office CPB342
 - Sequence of discussions
 - Those with time restrictions: 1 1:20 pm
 - A F: 1 2pm
 - F O: 1:45 3pm
 - O Z: 2:45 4pm

Thursday, Oct. 27, 2011

Special Project #5

• In the circuit on the right, find out what the currents I_1 , I_2 and I_3 are using Kirchhoff's rules in the following two cases:

- All the directions of the current flows are as shown in the figure. (3points)
- When the directions of the flow of the current I_1 and I_3 are opposite than what is drawn in the figure but the direction of I_2 is the same. (5 points)
- When the directions of the flow of the current I_2 and I_3 are opposite than what is drawn in the figure but the direction of I_1 is the same. (5 points)
- Show the details of your OWN work to obtain credit.
- Due is at the beginning of the class Thursday, Nov. 3.

Thursday, Oct. 27, 2011

Magnetism

- What are magnets?
 - Objects with two poles, north and south poles
 - The pole that points to geographical north is the north pole and the other is the south pole

S

N

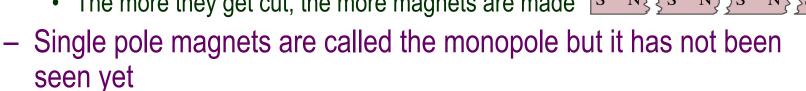
S

S

N

- Principle of compass
- These are called magnets due to the name of the region, Magnesia, where rocks that attract each other were found
- What happens when two magnets are brought to each other?
 S N
 - They exert force onto each other
 - What kind?
 - Both repulsive and attractive forces depending on the configurations
 - Like poles repel each other while the unlike poles attract

N


N

S

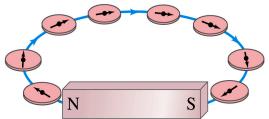
S

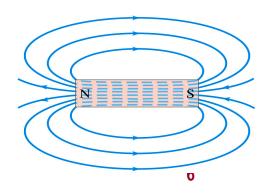
Magnetism

- So the magnet poles are the same as the electric charge?
 - No. Why not?
 - While the electric charges (positive and negative) can be isolated the magnet poles cannot be isolated. S
 - So what happens when a magnet is cut?
 - If a magnet is cut, two magnets are made.
 - The more they get cut, the more magnets are made

- Ferromagnetic materials: Materials that show strong magnetic effects
 - Iron, cobalt, nickel, gadolinium and certain alloys
- Other materials show very weak magnetic effects

S


Ν


- Just like the electric field that surrounds electric charge, a magnetic field surrounds a magnet
- What does this mean?
 - Magnetic force is also a field force
 - The force one magnet exerts onto another can be viewed as the interaction between the magnet and the magnetic field produced by the other magnet
 - What kind of quantity is the magnetic field? Vector or Scalar? **Vector**
- So one can draw magnetic field lines, too.
 - The direction of the magnetic field is tangential to a line _ at any point
 - The direction of the field is the direction the north pole of a compass would point to
 - The number of lines per unit area is proportional to the strength of the magnetic field
 - Magnetic field lines continue inside the magnet
 - Since magnets always have both the poles, magnetic field lines form closed loops unlike electric field lines

mursuay, Oct. 21, 2011

MITO 1444-000, Fall 2011 Dr. Jaehoon Yu

