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Announcements
* Reading assignments
— CH6.1 - 6.7 + the special topic

* Colloguium this week
— 4pm, today, Oct. 17, SH101
— Drs. Musielak and Fry of UTA
* Please mark your calendar for the Weinberg lecture
at 7:30pm, coming Wednesday, Oct. 24!!
— Let all of your family and friends know of this.
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Physics Department
The University of Texas at Arlington

COLLOQUIUM

Fundamental Theories of Physics in
Flar and Curved Space-Time

Dr. John Fry and Dr. Zdzislaw Musielak

Department of Phvsics
University of Texas at Arfincton
F:00 prm Wednesday October I7, 2012 room 101 SH

Abstract:

As of today. there 1s no commonly accepted thecory that explains the ornigin and naturce of Dark Matter and
Dark Encrgy. and also accounts for the physical effects necar the Big Bang singulanty. To scarch for such
thcory, we developed a novel method that allows us to formulate fundamental thcecorics of clementary
particles n flat and curved spacc-time. In this talk. we shall present our method and usce 1t obtain the
original Klein-Gordon cquation for scalar state functions as well as its gencralization to higher derivatives
and to spinor statce functions. Possible applications of the gencrmalized Klecin-Gordon cquations to Dark
Matter and Dark Encrgy will be discussed. We shall also describe our recently developed extension of
the method to curved space-time of General Relativity. The corresponding Klein-Gordon egquation in
spacc-time of a given curvature will be presented and its possible applications will be discussed. The talk
will be concluded with a progress report on our attempts to formulate a new physical thecory that s
required to be valid in the vicinity of the Big Bang singularity.

Refreshments will be served at 3:30p.m in the Physics LLounge




Special project #4

B Show that the wave function W=A[sin(kx-mt)
+icos(kx-mt)] is a good solution for the time-
dependent Schrodinger wave equation. Do NOT
use the exponential expression of the wave
function. (10 points)

B Determine whether or not the wave function
Y=AeX satisfies the time-dependent
Schrodinger wave equation. (10 points)

M Due for this special project is Monday, Oct. 22.
M You MUST have your own answers!
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Special project #5
BmShow that the Schrodinger equation
becomes Newton's second law. (15 points)
BMDeadline Monday, Oct. 29, 2012

mYou MUST have your own answers!
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Properties of Valid Wave Functions

Boundary conditions

1) To avoid infinite probabilities, the wave function must be finite
everywhere.

2) To avoid multiple values of the probability, the wave function must be
single valued.

3) For finite potentials, the wave function and its derivative must be
continuous. This is required because the second-order derivative
term in the wave equation must be single valued. (There are
exceptions to this rule when Vis infinite.)

4) In order to normalize the wave functions, they must approach zero as
X approaches infinity.

Solutions that do not satisfy these properties do not generally
correspond to physically realizable circumstances.
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Time-Independent Schrodinger Wave Equation

 The potential in many cases will not depend explicitly on time.

* The dependence on time and position can then be separated
in the Schrodinger wave equation. Let, W (x,t) = w(x) £ ()

which yields: ih‘//(x)a];(tt) :_h;f(t) azgj(ZX)‘l'V(x)l//(X)f(t)

- ne o L) 1 dy(y)
Now divide by the wave function: #—=3==-7 =5

* The left side of this last equation depends only on time, and
the right side depends only on spatial coordinates. Hence each
side must be equal to a constant. The time dependent side Is

+V(x)
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Time-Independent Schrodinger Wave Equation(con’ t)
m We integrate both sides and find: ,-;—,J@ _ der = ihlnf=Bt+C
/

where C is an integration constant that we may choose to be 0.
Therefore In f — Bt

nf=—
ih
This determines fto be by comparing it to the wave function of a free
partide £(r)= Bl — B _ ion B/i=w =B=hw=E

L I _p
f(z) ot
m This is known as the time-independent Schrodinger wave

equation, and it is a fundamental equation in quantum mechanics.

AV v (3 ()= B (9
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Stationary State
+ Recalling the separation of variables; ¥ (x.t) =y (x) f(7)
and with f(t) = e the wave function can be
written as: W (x,t)=y(x)e ™
* The probability density becomes:

Y =y (x) (e ™ ) =y’ (x)

* The probability distributions are constant in time.
This Is a standing wave phenomena that is called the

stationary state.
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Comparison of Classical and

Quantum Mechanics

m Newton’s second law and Schrodinger’'s wave
equation are both differential equations.

= Newton’s second law can be derived from the
Schrodinger wave equation, so the latter is the more
fundamental.

m Classical mechanics only appears to be more precise
because it deals with macroscopic phenomena. The
underlying uncertainties in macroscopic
measurements are just too small to be significant due
to the small size of the Planck’s constant
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Expectation Values

In quantum mechanics, measurements can only be expressed in terms
of average behaviors since precision measurement of each event is
impossible

The expectation value is the expected result of the average of many
measurements of a given quantity. The expectation value of x is
denoted by <x>.

Any measurable quantity for which we can calculate the expectation
value is called a physical observable. The expectation values of
physical observables (for example, position, linear momentum, angular
momentum, and energy) must be real, because the experimental
results of measurements are real.

ZNl.xl.

The average value of xis 7 _ N+ NpX, + Noxy + Nox, +--

N, +N,+N,+N, +-- YN,

i
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Continuous Expectation Values

 We can change from discrete to B J*‘” xP(x)dx
continuous variables by using X ===
the probability P(x,f) of | P(x)ax
observing the particle at a -
particular x. ) rwx‘lf(x,t)* W (xt)dx
Using the wave function, the X =" -
expectation value is: Lo ¥ (x,t) ¥ (x,t)dx

The expectation value of any
function g(x) for a normalized
wave function:
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Momentum Operator

* To find the expectation value of p, we first need to represent p in
terms of x and t. Consider the derivative of the wave function of a free
particle with respect to x:

oV Jdr
_ z(kx—a)t) kx a)t .
= e = jke'l = k'Y
ox E)x[ 5 ]
With k=p/f we have 9% _ ;P s
0x h
T Yi(x,t
This yields p[\lj(x,t)] — _iA d (x, )
ox
* This suggests we define the momentum operatoras  p = _mi
 The expectation value of the momentum is ox
oW (x.t
J ¥ (x,t)p¥ xt)dx——zh ‘P “(x,1) E§ )dx
X
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Position and Energy Operators
m [he position x Is its own operator as seen above.

m The time derivative of the free-particle wave function

IS a\'P J i(kv—ot) | _ . i(kx—1) _ -
at =5 [ ] = —iwe =—i¥
Substituting = E [ h vields E[ ¥ (x.t) |=in ang,t)
[
oA 0
m The energy operatoris E = zhg
m The expectation value of the energy is
J P (x,0)EW (x,1)dx = zhj ¥ (x t)aLP(x’t)dx
ot
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Infinite Square-Well Potential

The simplest such system is that of a particle trapped in a
box with infinitely hard walls that the particle cannot
penetrate. This potential is called an infinite square well w

and is given by o x<0x>L
Vix)=
{O O<x<L

[e)]

L
Position

The wave function must be zero where the potential is
infinite.
Where the potential is zero inside the box, the Schrodinger
wave equation becomes dy _ 2"";E w =—k2y Where

k = \2mE/ i o h
The general solutionis W (x)= Asinkx + Bcos kx.
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Wednesday, Oct. 17, 2012

Quantization

Since the wave function must be continuous, the boundary conditions
of the potential dictate that the wave function must be zero at x =0
and x = L. This yields valid solutions for B=0 and for integer values of
n such that kL = nz =» k=nm/L

nwx

The wave function is now W, ( x) — A Sin(T)

We normalize the wave function

, (L . [ nTx B
J 1// l//n x)dx—l A jo sin (T)dx—l

The normalized wave function becomes

v

These functions are identical to those obtained for a vibrating string

with fixed ends.
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