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PHYS 3313 – Section 001 
Lecture #13 

Wednesday, Oct. 17, 2012 
Dr. Jaehoon Yu 

•  Properties of valid wave functions 
•  Time independent Schrodinger Equation 
•  Expectation Values 
•  Operators – Position, Momentum and Energy 
•  Infinite Potential Well 
•  Finite Potential Well 
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Announcements 
•  Reading assignments 

–  CH6.1 – 6.7 + the special topic 

•  Colloquium this week 
–  4pm, today, Oct. 17, SH101 
–  Drs. Musielak and Fry of UTA 

•  Please mark your calendar for the Weinberg lecture 
at 7:30pm, coming Wednesday, Oct. 24!! 
–  Let all of your family and friends know of this. 
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Special project #4 
 Show that the wave function Ψ=A[sin(kx-ωt)

+icos(kx-ωt)] is a good solution for the time-
dependent Schrödinger wave equation.  Do NOT 
use the exponential expression of the wave 
function. (10 points) 

 Determine whether or not the wave function 
Ψ=Ae-α|x| satisfies the time-dependent 
Schrödinger wave equation. (10 points) 

 Due for this special project is Monday, Oct. 22. 
 You MUST have your own answers! 
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Special project #5 
 Show that the Schrodinger equation 

becomes Newton’s second law.  (15 points) 
 Deadline Monday, Oct. 29, 2012 
 You MUST have your own answers! 
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Properties of Valid Wave Functions 
Boundary conditions 
1)  To avoid infinite probabilities, the wave function must be finite 

everywhere. 
2)  To avoid multiple values of the probability, the wave function must be 

single valued. 
3)  For finite potentials, the wave function and its derivative must be 

continuous. This is required because the second-order derivative 
term in the wave equation must be single valued. (There are 
exceptions to this rule when V is infinite.) 

4)  In order to normalize the wave functions, they must approach zero as 
x approaches infinity. 

Solutions that do not satisfy these properties do not generally 
correspond to physically realizable circumstances. 
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Time-Independent Schrödinger Wave Equation 
•  The potential in many cases will not depend explicitly on time. 
•  The dependence on time and position can then be separated 

in the Schrödinger wave equation. Let, 

 which yields: 

 Now divide by the wave function: 
•  The left side of this last equation depends only on time, and 

the right side depends only on spatial coordinates. Hence each 
side must be equal to a constant. The time dependent side is 
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  We integrate both sides and find: 

 where C is an integration constant that we may choose to be 0. 
Therefore 

 This determines f to be by comparing it to the wave function of a free 
particle 

  This is known as the time-independent Schrödinger wave 
equation, and it is a fundamental equation in quantum mechanics. 

Time-Independent Schrödinger Wave Equation(con’t) 
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i df

f∫ = Bdt∫

 
ln f = Bt

i

 f t( ) = eBt i = e− i Bt 
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∂f t( )
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−
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2m
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 ⇒ i ln f = Bt + C

= e− iω t  ⇒ B  =ω  ⇒ B = ω = E



Stationary State 
•  Recalling the separation of variables:  
     and with  f(t) =            the wave function can be 

written as: 
•  The probability density becomes: 

•  The probability distributions are constant in time. 
This is a standing wave phenomena that is called the 
stationary state. 

€ 

e−iωt
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Ψ x,t( ) =ψ x( ) f t( )

Ψ x,t( ) =ψ x( )e− iω t

Ψ*Ψ = ψ 2 x( ) eiω te− iω t( ) =ψ 2 x( )



Comparison of Classical and 
Quantum Mechanics 

  Newton’s second law and Schrödinger’s wave 
equation are both differential equations. 

  Newton’s second law can be derived from the 
Schrödinger wave equation, so the latter is the more 
fundamental. 

  Classical mechanics only appears to be more precise 
because it deals with macroscopic phenomena. The 
underlying uncertainties in macroscopic 
measurements are just too small to be significant due 
to the small size of the Planck’s constant 
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Expectation Values 
•  In quantum mechanics, measurements can only be expressed in terms 

of average behaviors since precision measurement of each event is 
impossible 

•  The expectation value is the expected result of the average of many 
measurements of a given quantity. The expectation value of x is 
denoted by <x>. 

•  Any measurable quantity for which we can calculate the expectation 
value is called a physical observable. The expectation values of 
physical observables (for example, position, linear momentum, angular 
momentum, and energy) must be real, because the experimental 
results of measurements are real. 

•  The average value of x is  
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x = N1x1 + N2x2 + N3x3 + N4x4 +
N1 + N2 + N3 + N4 +

=
Nixi

i
∑

Ni
i
∑



Continuous Expectation Values 
•  We can change from discrete to 

continuous variables by using 
the probability P(x,t) of 
observing the particle at a 
particular x. 

•  Using the wave function, the 
expectation value is: 

•  The expectation value of any 
function g(x) for a normalized 
wave function: 
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Momentum Operator 
•  To find the expectation value of p, we first need to represent p in 

terms of x and t. Consider the derivative of the wave function of a free 
particle with respect to x: 

 With k = p / ħ  we have 

 This yields 

•  This suggests we define the momentum operator as             . 
•  The expectation value of the momentum is 
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Position and Energy Operators 
  The position x is its own operator as seen above. 
  The time derivative of the free-particle wave function 

is 

 Substituting ω = E / ħ  yields   

  The energy operator is 
  The expectation value of the energy is 
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Infinite Square-Well Potential 
•  The simplest such system is that of a particle trapped in a 

box with infinitely hard walls that the particle cannot 
penetrate. This potential is called an infinite square well 
and is given by 

•  The wave function must be zero where the potential is 
infinite. 

•  Where the potential is zero inside the box, the Schrödinger 
wave equation becomes                 where

    . 
•  The general solution is                    .
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V x( ) = ∞      x ≤ 0, x ≥ L
0       0 < x < L

⎧
⎨
⎩

 

d 2ψ
dx2

= −
2mE
2

ψ

 k = 2mE 2

ψ x( ) = Asin kx + Bcoskx

= −k2ψ



Quantization 
•  Since the wave function must be continuous, the boundary conditions 

of the potential dictate that the wave function must be zero at x = 0 
and x = L. This yields valid solutions for B=0 and for integer values of 
n such that kL = nπ  k=nπ/L 

•  The wave function is now 

•  We normalize the wave function 

•  The normalized wave function becomes 

•  These functions are identical to those obtained for a vibrating string 
with fixed ends. 
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