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PHYS 3313 – Section 001 
Lecture #18 

Monday, Nov. 12, 2012 
Dr. Jaehoon Yu 

•  Quantum Numbers 
•  Principal Quantum Number 
•  Orbital Angular Momentum Quantum 

Number  
•  Magnetic Quantum Number 
•  The Zeeman Effect 
•  Intrinsic Spin 
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Announcements 
•  Quiz #3 results 

–  Class average: 17.7/50 
•  Equivalent to 35.4/100 
•  Previous averages: 27.4/100 and 67.3/100 

•  Homework #7 
–  CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29 
–  Due on Monday, Nov. 19, in class  

•  Reading assignments 
–  CH7.6 and the entire CH8 

•  Colloquium Wednesday 
–  At 4pm, Wednesday, Nov. 14, in SH101 
–  Dr. Masaya Takahashi of UT South Western Medical 
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Principal Quantum Number n 
•  It results from the solution of R(r) in the separate 

Schrodinger Eq. because R(r) includes the potential 
energy V(r). 

 The result for this quantized energy is 

•  The negative means the energy E indicates that the 
electron and proton are bound together. 
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Quantum Numbers 
•  The full solution of the radial equation requires an 

introduction of a quantum number, n, which is a non-zero 
positive integer. 

•  The three quantum numbers: 
–  n  Principal quantum number 
–  ℓ  Orbital angular momentum quantum number 
–  mℓ  Magnetic quantum number 

•  The boundary conditions put restrictions on these 
–  n = 1, 2, 3, 4, . . .     (n>0)    Integer 
–  ℓ = 0, 1, 2, 3, . . . , n − 1    (ℓ < n)    Integer 
–  mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ  (|mℓ| ≤ ℓ) Integer 

•  The predicted energy level is 
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What are the possible quantum numbers for the state n=4 in 
atomic hydrogen?  How many degenerate states are there? 

Ex 7.3: Quantum Numbers & Degeneracy 
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  n   ℓ   mℓ   
  4   0   0 
  4   1         -1, 0, +1 
  4   2    -2, -1, 0, +1, +2 
  4   3      -3, -2, -1, 0, +1, +2, +3 

The energy of a atomic hydrogen state is determined only by the 
primary quantum number, thus, all these quantum states, 
1+3+5+7 = 16, are in the same energy state.  
Thus, there are 16 degenerate states for the state n=4. 



Hydrogen Atom Radial Wave Functions 
•  The radial solution is specified by the values of n and ℓ 
•  First few radial wave functions Rnℓ 
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Solution of the Angular and 
Azimuthal Equations 

•  The solutions for azimuthal eq. are        or   
•  Solutions to the angular and azimuthal 

equations are linked because both have mℓ 
•  Group these solutions together into functions 

---- spherical harmonics 
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Normalized Spherical Harmonics 
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Show that the spherical harmonic function Y11(θ,φ) satisfies the angular 
Schrodinger equation.  

Ex 7.1: Spherical Harmonic Function 
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Solution of the Angular and Azimuthal Equations 

•  The radial wave function R and the spherical 
harmonics Y determine the probability density for 
the various quantum states.  

•  Thus the total wave function ψ(r,θ,φ) depends on n, 
ℓ, and mℓ. The wave function can be written as  
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Orbital Angular Momentum Quantum Number ℓ 
•  It is associated with the R(r) and f(θ) parts of the wave 

function.  
•  Classically, the orbital angular momentum       with 

L = mvorbitalr.  
•  ℓ is related to L by        . 
•  In an ℓ = 0 state,         . 
 
 

 It disagrees with Bohr’s semi-classical “planetary” model of 
electrons orbiting a nucleus L = nħ. 
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Orbital Angular Momentum Quantum Number ℓ 
•  A certain energy level is degenerate with 

respect to ℓ when the energy is independent of ℓ. 
•  Use letter names for the various ℓ values 

–  ℓ =   0  1  2  3  4  5 . . . 
– Letter =  s  p  d  f  g  h . . . 

•  Atomic states are referred to by their n and ℓ 
•  A state with n = 2 and ℓ = 1 is called a 2p state 
•  The boundary conditions require n > ℓ 
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  The relationship of L, Lz, ℓ, and mℓ for 
ℓ = 2. 

                 is fixed. 
  Because Lz is quantized, only certain 

orientations of     are possible and this 
is called space quantization.   

Magnetic Quantum Number mℓ     
•  The angle φ is a measure of the rotation about the z axis. 
•  The solution for g(φ) specifies that mℓ is an integer and related to the z component 

of L. 
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•  Quantum mechanics allows      to be quantized along only 
one direction in space. Because of the relation L2 = Lx

2 + Ly
2 + 

Lz
2, once a second component is known, the third component 

will also be known.  
•  Now, since we know there is no preferred direction,     
 
 
•  We expect the average of the angular momentum 

components squared to be              . 

Magnetic Quantum Number mℓ 
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•  The Dutch physicist Pieter Zeeman showed the spectral lines 
emitted by atoms in a magnetic field split into multiple energy levels. 
It is called the Zeeman effect. 

Normal Zeeman effect: 
•  A spectral line of an atom is split into three lines. 
•  Consider the atom to behave like a small magnet. 
•  The current loop has a magnetic moment μ = IA and the period T = 

2πr / v. If an electron can be considered as orbiting a circular 
current loop of I = dq / dt around the nucleus, we obtain 

•    where L = mvr is the magnitude of the orbital  
   angular momentum 

Magnetic Effects on Atomic Spectra—
The Normal Zeeman Effect 
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•  The angular momentum is aligned with the magnetic moment, and the 
torque between       and       causes a precession of       . 

 Where μB = eħ / 2m is called the Bohr magneton. 
•      cannot align exactly in the z direction and  

has only certain allowed quantized orientations. 

  Since there is no magnetic field to 
align them,        points in random 
directions.  

  The dipole has a potential energy 

The Normal Zeeman Effect 
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The Normal Zeeman Effect 
•  The potential energy is quantized due to the magnetic 

quantum number mℓ. 
 
•  When a magnetic field is applied, the 2p level of atomic 

hydrogen is split into three different energy states with the 
electron energy difference of ΔE = μBB Δmℓ. 

•  So split is into a total of 2ℓ+1 energy states 

mℓ Energy 

1 E0 + μBB 

0 E0 

−1 E0 − μBB 
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The Normal Zeeman Effect 

•  A transition 
from 2p to 1s 
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•  An atomic beam of particles in the ℓ = 1 state pass through a magnetic 
field along the z direction. (Stern-Gerlach experiment) 

 
•    

•    

•  The mℓ = +1 state will be deflected down, the mℓ = −1 state up, and the 
mℓ = 0 state will be undeflected. 

•  If the space quantization were due to the magnetic quantum number 
mℓ, mℓ states is always odd (2ℓ + 1) and should have produced an odd 
number of lines. 

The Normal Zeeman Effect 
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Intrinsic Spin 
  In 1920, to explain spectral line splitting of Stern-Gerlach experiment, 

Wolfgang Pauli proposed the forth quantum number assigned to 
electrons  

  In 1925, Samuel Goudsmit and George Uhlenbeck in Holland proposed 
that the electron must have an intrinsic angular momentum and 
therefore a magnetic moment. 

  Paul Ehrenfest showed that the surface of the spinning electron should 
be moving faster than the speed of light to obtain the needed angular 
momentum!! 

  In order to explain experimental data, Goudsmit and Uhlenbeck 
proposed that the electron must have an intrinsic spin quantum 
number s = ½. 
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Intrinsic Spin 
•  The spinning electron reacts similarly to the orbiting electron in 

a magnetic field. (Dirac showed that this is ecessary due to special relativity..) 

•  We should try to find L, Lz, ℓ, and mℓ.  
•  The magnetic spin quantum number ms has only two values, 

ms = ±½. 
The electron’s spin will be either “up” or 
“down” and can never be spinning with its 
magnetic moment µs exactly along the z 
axis. 
For each state of the other quantum 
numbers, there are two spins values 
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Intrinsic Spin 
•  The magnetic moment is                             or                    . 
•  The coefficient of      is −2μB as with      is a consequence of theory 

of relativity. 
•  The gyro-magnetic ratio (ℓ or s). 
•  gℓ = 1 and gs = 2, then 

 
•  The z component of     is                               . 
•  In ℓ = 0 state 

•  Apply mℓ and the potential energy becomes 

no splitting due to     . 

there is space quantization due to the 
intrinsic spin      . 

and 
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Energy Levels and Electron Probabilities 
•  For hydrogen, the energy level depends on the principle 

quantum number n. 

  In ground state an atom cannot 
emit radiation. It can absorb 
electromagnetic radiation, or gain 
energy through inelastic 
bombardment by particles. 
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Selection Rules 
•  We can use the wave functions to calculate transition 

probabilities for the electron to change from one state to 
another. 

Allowed transitions: Electrons absorbing or emitting photons 
to change states when Δℓ = ±1. 

Forbidden transitions:Other transitions possible but occur 
with much smaller probabilities when Δℓ ≠ ±1.   

    Δn=anything 
    Δℓ = ±1 
    Δmℓ 0, ±1 
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Probability Distribution Functions 
•  We must use wave functions to calculate the 

probability distributions of the electrons. 
•  The “position” of the electron is spread over space 

and is not well defined. 
•  We may use the radial wave function R(r) to calculate 

radial probability distributions of the electron. 
•  The probability of finding the electron in a differential 

volume element dτ  is 
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Probability Distribution Functions 
 The differential volume element in spherical polar 

coordinates is 
 

 Therefore, 
 
 We are only interested in the radial dependence. 
 
 The radial probability density is P(r) = r2|R(r)|2 and it 

depends only on n and l. 
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  R(r) and P(r) for 
the lowest-lying 
states of the 
hydrogen atom 

Probability Distribution Functions 
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Probability Distribution Functions 
•  The probability density for the hydrogen atom for 

three different electron states 

Monday, Nov. 12, 2012 29 PHYS 3313-001, Fall 2012                      
Dr. Jaehoon Yu 


