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Announcements

Reminder Homework #7
— CHY end of chapter problems: 7, 8, 9, 12, 17 and 29

— Due on Monday, Nov. 19, in class

Reading assignments
— Entire CH8 (in particular CH8.1), CH9.4 and CH9.7

Class is cancelled Wednesday, Nov. 21
Please be sure to do class evaluations!

Colloquium Wednesday
— At 4pm, Wednesday, Nov. 14, in SH101
— Dr. Masaya Takahashi of UT South Western Medical
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Physics Department
The University of Texas at Arlington

COLLOQUIUM

MR Imaging at high magnetic field
-A challenge to new biological information from
science to clinical application-

Dr. Masaya Takahashi

University of Texas Southwestern Medical Center/
Advanced Imaging Rescarch Center/Radiology.

F-00 pm Wednesday November I4, 20712 room 107 SH

Abstract:

Reocent technical progress in noninvasive imaging techniques - notably magnetic resonance imaging (MRI) - in
terms of improverment in achicevable signal-to-noisc ratio and spatialtemporal rescolution, bas beer overcomaing
several fundamental difficulties. Subscguently, there is ar increase in demandé to Bave a better diagrostic tool with
whichk to éotermine the mechanism, Jocation ané stage of the discascs. An important challenge is the dovelopament of
more powerful, multi-xapagte methods for characterization of anatomical ané functional charnges, predicting
individual outcome ané responsivencss to particular therapics on the basis of clinical and laboratory characteristics.
More investigators have boen applying higher magnetic ficld strengths (2 Tesla or higher) in rescarch and clinical
scttings. Higher magnetic ficld strength 3s expocted to afford higher spatial resolution and/or a decrease in the length
of total scar taime Guc to its higher sagnal intensity. In the first half of this lecture, we will revicew the advarnce MRI
and contrast agents that are state-of-the-art at high magnetic $icld strength in which we hope orne can take a hint in
their expertise. We bave boen dedicated to the dovelopment of new acguisition and processing methods by means of
MRI during the past years, pormitting cuantitative characterization of the pathophysiological change. Amicde proton
trarsfer (APT) imaging is onc of the chaemical exchange saturation: transfer (CEST) imaging mcethods that are the
most practical molecular MR imaging. With this method the exchange betweoon protons of free tissuc water and the
amicde groups (-NE) of endogeonous mobdbile protoins and poptices is imaged. In the second kalf of this lecture, we
will illustrate the CEST/APT imaging and its contrast agent.

Refreshments will be served a2t 2:30p.m i the Physics Lounge




Why is statistical physics necessary?

 Does physics perceive inherent uncertainty ana
indeterminism since everything is probabilistic?

o Statistical physics is necessary since

— As simple problems as computing probability of coin toss is
complex, so it is useful to reduce it to statistical terms

— When the number of particles gets large, it is rather impractical
to describe the motion of individual particle than describing the
motion of a group of particles

— Uncertainties are inherent as Heisenberg's uncertainty principle
showed and are of relatively large scale in atomic and
subatomic level

o Statistical physics necessary for atomic physics and the
description of solid states which consists of many atoms
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Historical Overview

Statistics and probability: New mathematical methods developed
to understand the Newtonian physics through the eighteenth and
nineteenth centuries.

Lagrange around 1790 and Hamilton around 1840: They added
significantly to the computational power of Newtonian mechanics.
Pierre-Simon de Laplace (1749-1827)

— Had a view that it is possible to have a perfect knowledge of the universe
— Can predict the future and the past to the beginning of the universe

— He told Napoleon that the hypothesis of God is not necessary

— But he made major contributions to the theory of probability

Benjamin Thompson (Count Rumford): Put forward the idea of

heat as merely the motion of individual particles in a substance but
not well accepted

James Prescott Joule: Demonstrated experimentally the

mechanical equivalence of heat and energy
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Joule’s experiment

» Showed deterministically the equivalence of heat
and energy

* Dropping weight into the water and measuring the
change of temperature of the water
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Historical Overview
« James Clark Maxwell

— Brought the mathematical theories of probability and
statistics to bear on the physical thermodynamics

problems

— Showed that distributions of an ideal gas can be used
to derive the observed macroscopic phenomena

— His electromagnetic theory succeeded to the statistical
view of thermodynamics
» Einstein: Published a theory of Brownian motion, a
theory that supported the view that atoms are real

 Bohr: Developed atomic and quantum theory
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Maxwell Velocity Distribution

Laplace claimed that it is possible to know everything about
an ideal gas by knowing the position and velocity precisely

There are six parameters—the position (x, y, z) and the
velocity (v,, v,, v,)—per molecule to know the position and
instantaneous velocity of an ideal gas.

These parameters make up 6D phase space

The velocity components of the molecules are more
important than positions, because the energy of a gas should
depend only on the velocities.

Define a velocity distribution function = the probability of
finding a particle with velocity between v and v +d>v
where d’v=dv dv dv.
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Maxwell Velocity Distribution

» Maxwell proved that the probability distribution function is
proportional to exp(—4mv* /kT)
Therefore  f(v)d*v=Cexp(-4Bmv*)d*v
where C is a proportionality constant and = (kT)™".

+ Because V2= v, 2+ V2 + V7

f(?/)d%j = Cexp[—%ﬁm(vi +v, + vzz)}dq/
* Rewrite this as the product of three factors (i.e. probability density).

g(vx)dvx =C exp(—%ﬁmvﬁ )dvx
g(vy)dvy =C exp(—%ﬁmvﬁ)dvy

Wednesday, Nov. 14,

@3 PHYS 3313-001, Fall 2012
2012

Dr. Jaehoon Yu




The solution

Since the probability is 1 when integrated over entire space, we obtain

[ (), = (;—Z] 2 =1 ISoIveforC’> C :('[23_’;‘)1/2
T (i = g o

The average velocity in x dlreCtIOI’(IS )
v. =0

vx_f: g(v,)dv, = CJ V. exp —lﬁmv

The average of the square of the velocity in x direction is
2~ T ) 1 2 A (2 _l 2
v, =C Lo vV exp(—E,Bmvx jdvx =2C jo Ve exp( 5 Pmy; )dvx

Bm \/E( 2 ]3/2_ L kT

o 2 \Bm)  Bm

Where T is the absolute temperature (temp in C+273), mis the
molecular mass and k is the Boltzman constant k=1.38x107J/K
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Maxwell Velocity Distribution

M The results for the x, y, and z velocity components
are identical.

B The mean translational kinetic energy of a molecule:

K= lmv2 = lm(vi +y° +v2) =lm(3k—Tj = ng
2 2 ot 2 m 2
M Purely statistical considerations is good evidence of
the validity of this statistical approach to

thermodynamics.
B Note no dependence of the formula to the mass!!
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Ex 9.1: Molecule Kinetic Energy
Compute the mean translational KE of (a) a single ideal gas molecule in eV
and (b) a mol of ideal gas in J at room temperature 20°C.

(@)K = %kT = %(1.38 ><10—23)-(273+2o) =6.07%x107'(J)=

I
=0.038(eV) = —(eV
(¢V) = 55(eV)

(b)K = (%kT)NA = [%(1.38 x107)-(273+ 20)]6.02>< 10™ =

=6.07x107"-6.02x10%(J)=3650(J)

What is the mean translational KE of 1kg of steam at 1atm at 100°C,
assuming an ideal gas? Water molecule is 18g/mol.
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Equipartition Theorem

The formula for average kinetic energy 3kT/2 works for
monoatomic molecule what is it for diatomic molecule?

Consider oxygen molecule as two oxygen atoms
connected by a massless rod =» This will have both
translational and rotational energy

How much rotational energy is there and how is it related
to temperature?

Equipartition Theorem:

— In equilibrium a mean enerqy of 72 kT per molecule is associated
with each independent quadratic term in the molecule’s energy.

— Each independent phase space coordinate: degree of freedom

— Essentially the mean energy of a molecule is 72 kT *NDoF

Wednesday, Nov. 14, -3- PHYS 3313-001, Fall 2012 13
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Equipartition Theorem

B |n a monatomic ideal gas, each molecule has
K=1lm’ = %m(vi + v, +VZ2)

B There are three degrees of freedom.

B Mean kinetic energy is 3(3kT)=3kT

B |n a gas of N helium molecules, the total internal energy is

U = NE =3 NkT
B The heat capacity at constant volume is C U — 3 Nk
2

V:a_T

B For the heat capacity for 1 mole,
_3 _3p_
Cy —gNAk—ER— 125]/K

B using the ideal gas constant R = 8.31 J/K.
Wednesday, Nov. 14, @3 PHYS 3313-001, Fall 2012
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Table of Measured Gas Heat Capacities

9.1 Molar Heat Capacities for
Selected Gases at 15°C and
1 Atmosphere

Gas cv (J/K) cv/R

T 125 11500
11500
2 AL
2 15
257
242 LS
2|
2 ok
S
3.40
4.92
3.06
3.42
3.76

= PHYS 3313-001, Fall 2012 "’
Dr. Jaehoon Yu

Wednesday, Nov. 14,
2012




The Rigid Rotator Model

B For diatomic gases, consider the rigid rotator model.
y

/\ Oxygen atom
X

Rigid connector
(massless)

. Oxygen atom

B The molecule rotates about either the x or y axis.
B The corresponding rotational energies are %Ixa))f and 51 @

B There are five degrees of freedom (three translational and two
rotational)=» resulting in mean energy of 5kT/2 per molecule
according to equi- partltlon principle (C,=5R/2)

Wednesday, Nov. 14, * PHYS 3313-001, Fall 2012
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Equipartition Theorem
From previous chapter, the mass of an atom is confined to
a nucleus that magnitude is smaller than the whole atom.

— l,is smaller than /, and /,.
— Only rotations about x and y are allowed.

In some circumstances it is better to think of atoms

connected to each other by a massless spring.

The vibrational kinetic energy is +m(dr/ dt)2

There are seven degrees of freedom (three translational,
two rotational, and two vibrational). =» 7kT/2 per molecule

While it works pretty well, the simple assumptions made for
equi-partition principle, such as massless connecting rod, is
not quite sufficient for detailed molecular behaviors

n:- PHYS 3313-001, Fall 2012 17
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Molar Heat Capacity

* The heat capacities of diatomic gases are temperature
dependent, indicating that the different degrees of freedom

are “turned on” at different temperatures.
Example of H,

4 T T TTTTT T T T TTTTI T T T TTT1
7
------- 2

3_ —

Vibration
____________ L___15
2

S Rotation

___________________ [
A 2

1_ —

Translation
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20 50 100 200 500 1000 2000 5000 10,000
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Classical and Quantum Statistics

* In gas, particles are so far apart, they do not interact
substantially =» even if they collide, they can be
considered as elastic and do not affect the mean values

* |f molecules, atoms, or subatomic particles are in the liquid
or solid state, the Pauli exclusion principle* prevents two
particles with identical quantum states from sharing the
same space = limits available energy states in quantum
systems

— Recall there is no restriction on particle energies in classical
physics.

* This affects the overall distribution of energies

*Pauli Exclusion Principle: No two electrons in an atom may have the same set of quantum numbers (n,l,ml N> )
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Classical Distributions
B Rewrite Maxwell speed distribution in terms of energy.
F(v)dv=4rnC exp(—ﬁmv2/2)v2dv = F(E)dE
M Probability for finding a particle between speed v and v+dv

B For a monatomic gas the energy is all translational kinetic
energy. E=1my’

dE =mv dv
= dE _ dE _ dE
mv  m2E/m  2mE
M where
F(E) =2 exp(~BE)E"

o \/Em3/2
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Classical Distributions

Boltzmann showed that the statistical factor exp(-BE) is a
characteristic of any classical system.

— regardless of how quantities other than molecular speeds may affect the energy
of a given state

Maxwell-Boltzmann factor for classical system:

F,, = Aexp(-BE)
The energy distribution for classical system:
n(E)=g(E)F,,
n(E) dE: the number of particles with energies between E and E + dE

g(E): the density of states, is the number of states available per
unit energy range

Fug: the relative probability that an energy state is occupied at a given
temperature
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Quantum Distributions
M |dentical particles cannot be distinguished if their wave
functions overlap significantly
B Characteristic of indistinguishability that makes quantum statistics
different from classical statistics.
B Consider two distinguishable particles in two different
energy state with the same probability (0.5 each)

B The possible configurations are = E2
A, B
A B
B A
A, B

B Since the four states are equally likely, the probability of
each state is one-fourth (0.25).
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Quantum Distributions

B [f the two particles are indistinguishable:

State 1 | State 2
XX
X X
XX

B There are only three possible configurations
B Thus the probability of each is one-third (~0.33).

B Because some particles do not obey the Pauli exclusion principle, two
kinds of quantum distributions are needed.

B Fermions: Particles with half-spins (1/2) that obey the Pauli principle.
Electron, proton, neutron, any atoms or molecules with odd number

of fermions . .
B Bosons: Particles with zero or integer spins that do NOT obey the

Pauli principle. Pnoton, force mediators, pions, any atoms or molecules with even

B Examples? numbegof fermions
Wednesday, Nov. 14, g% PHYS 3313001, Fall 2012 23
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Quantum Distributions
Fermi-Dirac distribution: n(E)= g(E)F,,

where P 1
" B, exp(BE)+1

Bose-Einstein distribution: n(E)= g(E)Fy,
where 1
B B, exp(BE)-

B; (1= FD or BE) is a normalization factor.

Both distributions reduce to the classical Maxwell-Boltzmann
distribution when B. exp(BE) is much greater than 1.

— the Maxwell-Boltzmann factor A exp(-BE) is much less than 1.

— In other words, the probability that a particular energy state will be

occupied is much less than 1!
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Summary of Classical and Quantum Distributions

9.2 Classical and Quantum Distributions

Properties of the Distribution
Distributors ~ Distribution Examples Function
Maxwell- Particles are Ideal gases Fyg = A exp(—BE)
Boltzmann identical but

distinguishable

1

Bose-Einstein ~ Particles are Liquid *He, Iy = B 1

identical and photons e €xp (BE)

indistinguishable
with integer spin

Fermi-Dirac Particles are identical ~ Electron gas I =
Bpp exp(BE) + 1

and indistinguishable  (free electrons
with half-integer spin  in a conductor)
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Quantum Distributions

B The normalization constants for the
distributions depend on the 1.0
physical system being considered.

M Because bosons do not obey the
Pauli exclusion principle, more
bosons can fill lower energy states.

B Three graphs coincide at high
energies — the classical limit.

B Maxwell-Boltzmann statistics may
be used in the classical limit.

Bose-Einstein Fgp

”—‘-——I

Statistical Factor F

0 kT 2kT  3KT 4kT
Energy £
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Fermi-Dirac Statistics

This is most useful for electrical conduction

The normalization factor By B,,, = exp(—BE;)
— Where E is called the Fermi energy.

1
The Fermi-Dirac Factor becomes  F,, =

exp| B(E-E,) |+1

When E = E, the exponential term is 1. =»Fy =1/2

Inthe limitas T—0, . _ lfor E<E,
OforE>E,

FD

At T =0, fermions occupy the lowest energy levels available to them
— Since they cannot all fill the same energy due to Pauli Exclusion principle, they
will fill the energy states up to Fermi Energy
Near T =0, there is little chance that thermal agitation will kick a
fermion to an energy greater than E.
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Fermi-Dirac Statistics

F
Fpp T=0 b >0
1 1 Cl
I
E ! E

= As the temperature increases from T = 0, the Fermi-Dirac factor “smears out”, and more
fermions jump to higher energy level above Fermi energy

= \We can define Fermi temperature, defined as Tr = E; / k

F Fyp
FD T:TF T>> TF
11 It
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Classical Theory of Electrical Conduction

Paul Drude (1900) showed that the current in a conductor should be
linearly proportional to the applied electric field that is consistent with
Ohm’ s law. ,

ne-T
Prediction of the electrical conductivity 0 =
Mean free pathis 7=1/v ,
nel

True electrical conductivity: 5 = —_—
my

m

According to the Drude model, the conductivity should be proportional
to T2,

But for most conductors is very nearly proportional to T
The heat capacity of the electron gas is R.
This Is not consistent with experimental results.
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Free Electron Number Density

9.3 Free-Electron Number Densities for
Selected Elements at 7T = 300 K

N/V N/V
Element (X 102 m~3) Element (X 102 m~—3)
Cu 8.47 Mn («) 16.5
Ag 5.86 Zn 1125 2
Au 5.90 Cd 8) 27
Be 94.7 Hg (78 K) 8.65
Mg 8.61 Al 18.1
Ca 4.61 Ga 15.4
Sr 595 In L
Ba 2 15 Sn 14.8
Nb 5.56 Pb 15552
Fe 1| 7.({)

From N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia:
Saunders College (1976).
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Quantum Theory of Electrical Conduction

Arnold Sommerfield used correct distribution n(E) at room
temperature and found a value for o of 2 / 4.

With the value T = 80,000 K for copper, we obtain ¢, = 0.02R, which
Is consistent with the experimental value! Quantum theory has
proved to be a success.

Replace mean speed 4 in the previous page by Fermi speed u.
defined from E,. =1 mu;.

Conducting electrons are loosely bound to their atoms
— these electrons must be at the high energy level

— at room temperature the highest energy level is close to the Fermi
energy

2F,

We should use 1, = ~1.6x10°m/s
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Fermi energies, temperatures and velocities

9.4 Fermi Energies (T = 300 K], Fermi Temperatures, and Fermi Velocities
for Selected Metals

Element  Ej (eV) Ty (X 10°K)  up (X 105m/s) Element  Ep (eV) Ty (X 10°K)  up (X 105m/s)
IE 4.74 Sl 1.29 iz 1L 1550 1.98
Na 3.24 S 107 Mn 10.9 1127 1.96
K 2402 2.46 0.86 /n 9.47 11.0 1 {185
Rb B85 2l 0.81 Cd il 8.68 62
Cs 1£50 1.84 0.75 Hg 7113 &2 1.58
Cu 7.00 8.16 1.57 Al 117 13.6 2005
Ag 5.49 6.38 550 Ga 10.4 221 192
Au 54535 6.42 1.40 In 8.63 10.0 1.74
Be 14.3 16.6 2:25 il (ol [13) 9.46 1.69
Mg 7.08 8§25 1.58 Sn 11(0).7 168 1.90
Ca 4.69 5.44 1.28 Pb 9.47 11.0 B85
Sr 5.93 4.57 1111 Bi 9.90 111145 1587
Ba 3.64 4.23 11511%) Sb 10.9 1127 1.96
Nb 5192 6.18 15477]
From N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia: Saunders College (1976).
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Quantum Theory of Electrical Conduction

Drude thought that the mean free path could be no more
than several tenths of a nanometer, but it was longer than

his estimation.

Einstein calculated the value of ¢ to be on the order of 40
nm in copper at room temperature.

2
ne’l

The conductivity is o = ~6x10'Q" - m™

mu .
Sequence of proportions
Ooclocr™ =(ni+n§+nf)ocU_1 o< T
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Bose-Einstein Statistics

Blackbody Radiation

B |ntensity of the emitted radiationis 2rc’h 1
! $(A.1) = 215 hel AT

B Use the Bose-Einstein distribution because photons are bosons with
spin 1.

B For a free particle in terms of momentum:

P :\/Px2 +Py2 +p,° :%\/”12 +my’ +ny’

B The energy of a photon is pc, so
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Bose-Einstein Statistics

The number of allowed energy states within “radius”™ ris
3
N, =) ()

Where 1/8 comes from the restriction to positive values of n,and 2 comes
from the fact that there are two possible photon polarizations.

Energy is proportional to r, P he .
2L
3
The density of states g(E) is g(£) = c%’ = i’gcﬁ E*

The Bose-Einstein factor:  n(E) = g(E)Fy;
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Bose-Einstein Statistics

Convert from a number distribution to an energy density distribution u(E).

— Multiply by a factor E/L3 EnlE Q7T 1
M(E): n(3 ): 3 3E3 E/KT
L h’c e —1
— For all photons in the range E to E + dE
8t E’dE
u(E)dE = 133 oET _q
Using E = he/A and |dE| = (hc/N?) dA
8zhc 1
u(A,T)dA= 25 GhelAT
In the S| system, multiplying by c/4 is required.
2zc’h 1
$(4,T) = 25 Gl HMT 4
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Liquid Helium

* Has the lowest boiling point of any element (4.2 K at 1 atmosphere
pressure) and has no solid phase at normal pressure

The density of liquid helium as a function of temperature:

148 2.997
| Sp—— | o0
~ 144 | 2.167 NS
|
5 140 - 2106 X
o0 I |>
é ! ~—
B 136 i 2.046 =
2 132 | 1.986 &
Q | Q
A | <
128 ; 1.926 &
I 0
124 | 1.866 g
0 1 2 %8 4 5 -

A
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Liquid Helium
The specific heat of liquid helium as a function of temperature:

3.0
25

290
20 a
= 1.5

=
= 1.0 [~
S

o

05~

(4 A
2 A oA
| | | ] J
1.4 1.8 2.2 2.6 3.0

Temperature (K)

0

The temperature at about 2.17 K is referred to as the critical
temperature (T.), transition temperature, or lambda point.

*As the temperature is reduced from 4.2 K toward the lambda point, the
liquid boils vigorously. At 2.17 K the boiling suddenly stops.

*What happens at 2.17 K is a transition from the normal phase to the

superfluid phase.
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Liquid Helium

25
* The rate of flow B
increases dramatically = *°
as the temperatureis = | Liquid helium I
reduced becausethe = | -
. % Liquid helium I
superfluid has a low = 10
viscosity. g T
. . & 5
* Creeping film - i
formed when the 0
viscosity is very low A
Temperature (K)
Wednesday, Nov. 14, ficg) PHYS 3313-001, Fall 2012 39

2012 Dr. Jaehoon Yu



Liquid Helium

M Fritz London claimed (1938) that liquid helium below the

lambda point is part superfluid and part normal.

O As the temperature approaches absolute zero, the superfluid approaches
100% superfluid.

B The fraction of helium atoms in the superfluid state:

312
7,

B Superfluid liquid helium is referred to as a Bose-Einstein
condensation.
M not subject to the Pauli exclusion principle
M all particles are in the same quantum state
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Liquid Helium

Such a condensation process is not possible with fermions because
fermions must “stack up” into their energy states, no more than two
per energy state.

*He isotope is a fermion and superfluid mechanism is radically
different than the Bose-Einstein condensation.
Use the fermions™ density of states function and substituting for the

constant E yields o 32 Y2

E)=—

Bosons do not obey the Pauli principle, therefore the density of states
should be less by a factor of 2.

1/2
L

27V
gun(E) == 5 2my""E"”

Wednesday, Nov. 14,

* PHYS 3313-001, Fall 2012 41
2012

Dr. Jaehoon Yu




Liquid Helium

B mis the mass of a helium atom.
B The number distribution n(E) is now
n(E) = gpp (E)Fggp

_2aV 312 1+1/2 1
27 oy B
2

M In a collection of N helium atoms the normalization condition is
N :J' n(E) dE
w U2

27Z'V 3/2
2m dly

B Substituting u = E /KT,

2

1/2
N = ZV(z kT2 |

U
0 Bze -1

@B PHYS 3313-001, Fall 2012
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Liquid Helium

» Use minimum value of By = 1; this result corresponds
to the maximum value of N.

27V
N < 5 QmkT)*'*(2.315)

* Rearrange this, o B N T
" 2mk| 22V (2.315)

The resultis T = 3.06 K.
* The value 3.06 K is an estimate of T..
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Bose-Einstein Condensation in Gases

* By the strong Coulomb interactions among gas particles it
was difficult to obtain the low temperatures and high
densities needed to produce the condensate. Finally
success was achieved in 1995.

+ First, they used laser cooling to cool their gas of 8’Rb atoms
to about 1 mK. Then they used a magnetic trap to cool the
gas to about 20 nK. In their magnetic trap they drove away
atoms with higher speeds and further from the center. What
remained was an extremely cold, dense cloud at about 170
nk.
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