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PHYS 3313 – Section 001 
Lecture #19 

Wednesday, Nov. 14, 2012 
Dr. Jaehoon Yu 

• Historical Overview 
• Maxwell Velocity Distribution  
• Equipartition Theorem  
• Classical and Quantum Statistics  
• Fermi-Dirac Statistics 
• Quantum Theory of Conductivity 
• Bose-Einstein Statistics 
• Liquid Helium 
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Announcements 
•  Reminder Homework #7 

–  CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29 
–  Due on Monday, Nov. 19, in class  

•  Reading assignments 
–  Entire CH8 (in particular CH8.1), CH9.4 and CH9.7  

•  Class is cancelled Wednesday, Nov. 21 
•  Please be sure to do class evaluations! 
•  Colloquium Wednesday 

–  At 4pm, Wednesday, Nov. 14, in SH101 
–  Dr. Masaya Takahashi of UT South Western Medical 
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Why is statistical physics necessary? 
•  Does physics perceive inherent uncertainty and 

indeterminism since everything is probabilistic? 
•  Statistical physics is necessary since 

–  As simple problems as computing probability of coin toss is 
complex, so it is useful to reduce it to statistical terms 

–  When the number of particles gets large, it is rather impractical 
to describe the motion of individual particle than describing the 
motion of a group of particles 

–  Uncertainties are inherent as Heisenberg’s uncertainty principle 
showed and are of relatively large scale in atomic and 
subatomic level 

•  Statistical physics necessary for atomic physics and the 
description of solid states which consists of many atoms 
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Historical Overview 
•  Statistics and probability: New mathematical methods developed 

to understand the Newtonian physics through the eighteenth and 
nineteenth centuries. 

•  Lagrange around 1790 and Hamilton around 1840: They added 
significantly to the computational power of Newtonian mechanics. 

•  Pierre-Simon de Laplace (1749-1827) 
–  Had a view that it is possible to have a perfect knowledge of the universe 
–  Can predict the future and the past to the beginning of the universe 
–  He told Napoleon that the hypothesis of God is not necessary 
–  But he made major contributions to the theory of probability  

•  Benjamin Thompson (Count Rumford): Put forward the idea of 
heat as merely the motion of individual particles in a substance but 
not well accepted 

•  James Prescott Joule: Demonstrated experimentally the 
mechanical equivalence of heat and energy 
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Joule’s experiment 
•  Showed deterministically the equivalence of heat 

and energy 
•  Dropping weight into the water and measuring the 

change of temperature of the water 
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Historical Overview 
•  James Clark Maxwell 

–  Brought the mathematical theories of probability and 
statistics to bear on the physical thermodynamics 
problems 

–  Showed that distributions of an ideal gas can be used 
to derive the observed macroscopic phenomena 

–  His electromagnetic theory succeeded to the statistical 
view of thermodynamics 

•  Einstein: Published a theory of Brownian motion, a 
theory that supported the view that atoms are real 

•  Bohr: Developed atomic and quantum theory 
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Maxwell Velocity Distribution 
•  Laplace claimed that it is possible to know everything about 

an ideal gas by knowing the position and velocity precisely 
•  There are six parameters—the position (x, y, z) and the 

velocity (vx, vy, vz)—per molecule to know the position and 
instantaneous velocity of an ideal gas. 

•  These parameters make up 6D phase space   
•  The velocity components of the molecules are more 

important than positions, because the energy of a gas should 
depend only on the velocities. 

•  Define a velocity distribution function = the probability of 
finding a particle with velocity between                           
where 
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Maxwell Velocity Distribution 
•  Maxwell proved that the probability distribution function is 

proportional to                               
 Therefore                          . 
 where C is a proportionality constant and β ≡ (kT)−1.  

•  Because v2 = vx
2 + vy

2 + vz
2, 

•  Rewrite this as the product of three factors (i.e. probability density). 

exp − 1
2 mv2 kT( )

Wednesday, Nov. 14, 
2012 

PHYS 3313-001, Fall 2012                      
Dr. Jaehoon Yu 

9 

 
f v
( )d 3v = C exp − 1

2 βmv
2( )d 3v

 
f v
( )d 3v = C exp − 1

2 βm vx
2 + vy

2 + vz
2( )⎡⎣ ⎤⎦d

3v


 
f v
( )d 3v = Cg vx( )g vy( )g vz( )dvxdvydvz

g vx( )dvx = C ' exp − 1
2 βmvx

2( )dvx
g vy( )dvy = C ' exp − 1

2 βmvy
2( )dvy

g vz( )dvz = C ' exp − 1
2 βmvz

2( )dvz



The solution 
•  Since the probability is 1 when integrated over entire space, we obtain 

•  Thus  

•  The average velocity in x direction is 

•  The average of the square of the velocity in x direction is    

•  Where T is the absolute temperature (temp in C+273), m is the 
molecular mass and k is the Boltzman constant   
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g vx( )dvx−∞

+∞

∫ = C ' 2π
βm

⎛
⎝⎜

⎞
⎠⎟

1 2

= 1

g vx( )dvx =

vx = vxg vx( )dvx−∞

+∞

∫ =

vx
2 =

C ' = βm
2π

⎛
⎝⎜

⎞
⎠⎟
1 2

= βm
2π

π
2

2
βm

⎛
⎝⎜

⎞
⎠⎟

3 2

= 1
βm

= kT
m

k = 1.38 ×10−23 J K

Solve for C’ 

C ' vx exp − 1
2
βmvx

2⎛
⎝⎜

⎞
⎠⎟ dvx−∞

+∞

∫ =0

βm
2π

exp − 1
2
βmvx

2⎛
⎝⎜

⎞
⎠⎟ dvx

C ' vx
2 exp − 1

2
βmvx

2⎛
⎝⎜

⎞
⎠⎟ dvx−∞

+∞

∫ =2C ' vx
2 exp − 1

2
βmvx

2⎛
⎝⎜

⎞
⎠⎟ dvx0

+∞

∫



Maxwell Velocity Distribution 
 The results for the x, y, and z velocity components 

are identical. 
 The mean translational kinetic energy of a molecule: 

 
 Purely statistical considerations is good evidence of 

the validity of this statistical approach to 
thermodynamics. 

 Note no dependence of the formula to the mass!! 
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K = 1
2
mv2 = 1

2
m vx

2 + vy
2 + vz

2( ) = 12m
3kT
m

⎛
⎝⎜

⎞
⎠⎟ =

3
2
kT



Compute the mean translational KE of (a) a single ideal gas molecule in eV 
and (b) a mol of ideal gas in J at room temperature 20oC. 

Ex 9.1: Molecule Kinetic Energy 
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(a)K = 3
2
kT =

(b)K =

= 0.038 eV( ) ≈ 1
25

eV( )

3
2
1.38 ×10−23( ) ⋅ 273+ 20( ) = 6.07 ×10−21 J( ) =

3
2
kT⎛

⎝⎜
⎞
⎠⎟ NA =

3
2
1.38 ×10−23( ) ⋅ 273+ 20( )⎡

⎣⎢
⎤
⎦⎥
⋅6.02 ×1023 =

= 6.07 ×10−21 ⋅6.02 ×1023 J( ) = 3650 J( )
What is the mean translational KE of 1kg of steam at 1atm at 100oC, 
assuming an ideal gas?  Water molecule is 18g/mol. 



Equipartition Theorem 
•  The formula for average kinetic energy 3kT/2 works for 

monoatomic molecule what is it for diatomic molecule? 
•  Consider oxygen molecule as two oxygen atoms 

connected by a massless rod  This will have both 
translational and rotational energy 

•  How much rotational energy is there and how is it related 
to temperature? 

•  Equipartition Theorem: 
–  In equilibrium a mean energy of ½ kT per molecule is associated 

with each independent quadratic term in the molecule’s energy. 
–  Each independent phase space coordinate: degree of freedom 
–  Essentially the mean energy of a molecule is ½ kT *NDoF 
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Equipartition Theorem 
  In a monatomic ideal gas, each molecule has 

  There are three degrees of freedom. 
  Mean kinetic energy is  
  In a gas of N helium molecules, the total internal energy is 
 
  The heat capacity at constant volume is   

  For the heat capacity for 1 mole, 
 

  using the ideal gas constant R = 8.31 J/K. 

K =

3 1
2 kT( ) = 3

2 kT

U = NE = 3
2 NkT

CV = ∂U
∂T

=

cV = 3
2 NAk =
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3
2 Nk

3
2 R = 12.5 J K

1
2 mv

2 = 1
2 m vx

2 + vy
2 + vz

2( )



Table of Measured Gas Heat Capacities 
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The Rigid Rotator Model 
  For diatomic gases, consider the rigid rotator model. 

 
  The molecule rotates about either the x or y axis. 
  The corresponding rotational energies are  
  There are five degrees of freedom (three translational and two 

rotational) resulting in mean energy of 5kT/2 per molecule 
according to equi-partition principle (CV=5R/2) 

1
2 Ixω x

2 and 1
2 Iyω y

2

Wednesday, Nov. 14, 
2012 

PHYS 3313-001, Fall 2012                      
Dr. Jaehoon Yu 

16 



Equipartition Theorem 
•  From previous chapter, the mass of an atom is confined to 

a nucleus that magnitude is smaller than the whole atom. 
–  Iz is smaller than Ix and Iy. 
–  Only rotations about x and y are allowed. 

•  In some circumstances it is better to think of atoms 
connected to each other by a massless spring. 

•  The vibrational kinetic energy is  
•  There are seven degrees of freedom (three translational, 

two rotational, and two vibrational).  7kT/2 per molecule 
•  While it works pretty well, the simple assumptions made for 

equi-partition principle, such as massless connecting rod, is 
not quite sufficient for detailed molecular behaviors  

1
2 m dr dt( )2
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Molar Heat Capacity 
•  The heat capacities of diatomic gases are temperature 

dependent, indicating that the different degrees of freedom 
are “turned on” at different temperatures. 

   Example of H2 
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Classical and Quantum Statistics 
•  In gas, particles are so far apart, they do not interact 

substantially  even if they collide, they can be 
considered as elastic and do not affect the mean values 

•  If molecules, atoms, or subatomic particles are in the liquid 
or solid state, the Pauli exclusion principle* prevents two 
particles with identical quantum states from sharing the 
same space  limits available energy states in quantum 
systems 
–  Recall there is no restriction on particle energies in classical 

physics.  
•  This affects the overall distribution of energies 
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*Pauli Exclusion Principle: No two electrons in an atom may have the same set of quantum numbers  n,l,ml ,ms( ).



Classical Distributions 
 Rewrite Maxwell speed distribution in terms of energy. 

 Probability for finding a particle between speed v and v+dv 
 For a monatomic gas the energy is all translational kinetic 

energy.  

 
 where 

E = 1
2 mv

2
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F v( )dv =

dE =

dv = dE
mv

=

F E( ) = 8πC
2m3 2 exp −βE( )E1 2

4πC exp −βmv2 2( )v2dv = F E( )dE

mv dv
dE

m 2E m
=

dE
2mE



Classical Distributions 
•  Boltzmann showed that the statistical factor exp(−βE) is a 

characteristic of any classical system. 
–  regardless of how quantities other than molecular speeds may affect the energy 

of a given state 
•  Maxwell-Boltzmann factor for classical system: 

•  The energy distribution for classical system: 

•  n(E) dE: the number of particles with energies between E and E + dE 
•  g(E): the density of states, is the number of states available per 

 unit energy range 
•  FMB: the relative probability that an energy state is occupied at  a given 

temperature 
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FMB = Aexp −βE( )

n E( ) = g E( )FMB



Quantum Distributions 
  Identical particles cannot be distinguished if their wave 

functions overlap significantly 
 Characteristic of indistinguishability that makes quantum statistics 

different from classical statistics. 
 Consider two distinguishable particles in two different 

energy state with the same probability (0.5 each) 
 The possible configurations are   

 
 Since the four states are equally likely, the probability of 

each state is one-fourth (0.25). 

E1 E2 

A, B 

A B 

B A 

A, B 
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Quantum Distributions 
  If the two particles are indistinguishable: 

 
  There are only three possible configurations 
  Thus the probability of each is one-third (~0.33). 
  Because some particles do not obey the Pauli exclusion principle, two 

kinds of quantum distributions are needed. 
  Fermions: Particles with half-spins (1/2) that obey the Pauli principle. 

  Examples? 
  Bosons: Particles with zero or integer spins that do NOT obey the 

Pauli principle. 
  Examples? 

State 1 State 2 
XX 
X X 

XX 
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Electron, proton, neutron, any atoms or molecules with odd number 
of fermions 

Photon, force mediators, pions, any atoms or molecules with even 
number of fermions 



Quantum Distributions 
•  Fermi-Dirac distribution: 

 where 

•  Bose-Einstein distribution: 
 where 

•  Bi (i = FD or BE) is a normalization factor. 
•  Both distributions reduce to the classical Maxwell-Boltzmann 

distribution when Bi exp(βE) is much greater than 1. 
–  the Maxwell-Boltzmann factor A exp(−βE) is much less than 1. 
–  In other words, the probability that a particular energy state will be 

occupied is much less than 1! 

FFD = 1
BFD exp βE( ) +1

FBE =
1

BBE exp βE( )−1
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n E( ) = g E( )FFD

n E( ) = g E( )FBE



Summary of Classical and Quantum Distributions 
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Quantum Distributions 
 The normalization constants for the 

distributions depend on the 
physical system being considered. 

 Because bosons do not obey the 
Pauli exclusion principle, more 
bosons can fill lower energy states. 

 Three graphs coincide at high 
energies – the classical limit. 

 Maxwell-Boltzmann statistics may 
be used in the classical limit. 
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Fermi-Dirac Statistics 
•  This is most useful for electrical conduction 
•  The normalization factor BFD 

–  Where EF is called the Fermi energy. 
•  The Fermi-Dirac Factor becomes 

•  When E = EF, the exponential term is 1. FFD =1/2  
•  In the limit as T → 0, 

•  At T = 0, fermions occupy the lowest energy levels available to them 
–  Since they cannot all fill the same energy due to Pauli Exclusion principle, they 

will fill the energy states up to Fermi Energy 
•  Near T = 0, there is little chance that thermal agitation will kick a 

fermion to an energy greater than EF. 

FFD = 1
exp β E − EF( )⎡⎣ ⎤⎦ +1
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FFD =
1 for E < EF

0 for E > EF

⎧
⎨
⎩

BFD = exp −βEF( )



Fermi-Dirac Statistics 

  As the temperature increases from T = 0, the Fermi-Dirac factor “smears out”, and more 
fermions jump to higher energy level above Fermi energy 

  We can define Fermi temperature, defined as TF ≡ EF / k 

  When T >> TF, FFD approaches a simple decaying exponential 

T > 0 
 
 
 
 

T >> TF 
 
 
 
 

T = TF 
 
 
 
 

T = 0 
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Classical Theory of Electrical Conduction 
•  Paul Drude (1900) showed that the current in a conductor should be 

linearly proportional to the applied electric field that is consistent with 
Ohm’s law. 

•  Prediction of the electrical conductivity 
•  Mean free path is    
•  True electrical conductivity: 

•  According to the Drude model, the conductivity should be proportional 
to T−1/2. 

•  But for most conductors is very nearly proportional to T−1 
•  The heat capacity of the electron gas is R. 
•  This is not consistent with experimental results. 
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σ = ne
2τ
m

τ = l v

σ = ne
2l

mv



Table 9-3 p319 

Free Electron Number Density 
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Quantum Theory of Electrical Conduction 
•  Arnold Sommerfield used correct distribution n(E) at room 

temperature and found a value for α of π2 / 4.  
•  With the value TF = 80,000 K for copper, we obtain cV ≈ 0.02R, which 

is consistent with the experimental value! Quantum theory has 
proved to be a success. 

•  Replace mean speed      in the previous page by Fermi speed uF 
defined from                          . 

•  Conducting electrons are loosely bound to their atoms 
–  these electrons must be at the high energy level 
–  at room temperature the highest energy level is close to the Fermi 

energy 

•  We should use 

EF = 1
2 muF

2
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uF =
2EF

m
≈1.6 ×106 m s



Table 9-4 p319 

Fermi energies, temperatures and velocities 
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Quantum Theory of Electrical Conduction 
•  Drude thought that the mean free path could be no more 

than several tenths of a nanometer, but it was longer than 
his estimation. 

•  Einstein calculated the value of ℓ to be on the order of 40 
nm in copper at room temperature. 

•  The conductivity is 

•  Sequence of proportions 
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σ = ne2l
muF

≈ 6 ×107Ω−1 ⋅m−1

σ ∝ l ∝ r−2 = nx
2 + ny

2 + nz
2( )∝U −1 ∝T −1



Bose-Einstein Statistics 
Blackbody Radiation 
  Intensity of the emitted radiation is 
 
  Use the Bose-Einstein distribution because photons are bosons with 

spin 1. 
  For a free particle in terms of momentum: 

  The energy of a photon is pc, so 
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Bose-Einstein Statistics 
•  The number of allowed energy states within “radius” r is 

 Where 1/8 comes from the restriction to positive values of ni and 2 comes 
from the fact that there are two possible photon polarizations. 

•  Energy is proportional to r, 
 
•  The density of states g(E) is 
 
•  The Bose-Einstein factor: 

Nr = 2( ) 1
8( ) 4

3πr
3( )
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Bose-Einstein Statistics 
•  Convert from a number distribution to an energy density distribution u(E). 

–  Multiply by a factor E/L3 

 
–  For all photons in the range E to E + dE 

•  Using E = hc/λ and |dE| = (hc/λ2) dλ 

•  In the SI system, multiplying by c/4 is required. 

u E( ) = En E( )
L3

= 8π
h3c3

E 3 1
eE /kT −1

u E( ) dE = 8π
h3c3

E 3 dE
eE /kT −1
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Liquid Helium 
•  Has the lowest boiling point of any element (4.2 K at 1 atmosphere 

pressure) and has no solid phase at normal pressure 
The density of liquid helium as a function of temperature: 
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Liquid Helium 
The specific heat of liquid helium as a function of temperature: 

 
• The temperature at about 2.17 K is referred to as the critical 
temperature (Tc), transition temperature, or lambda point. 
• As the temperature is reduced from 4.2 K toward the lambda point, the 
liquid boils vigorously. At 2.17 K the boiling suddenly stops. 
• What happens at 2.17 K is a transition from the normal phase to the 
superfluid phase. 
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Liquid Helium 

•  The rate of flow 
increases dramatically 
as the temperature is 
reduced because the 
superfluid has a low 
viscosity.  

•  Creeping film – 
formed when the 
viscosity is very low 

Wednesday, Nov. 14, 
2012 

PHYS 3313-001, Fall 2012                      
Dr. Jaehoon Yu 

39 



Liquid Helium 
 Fritz London claimed (1938) that liquid helium below the 

lambda point is part superfluid and part normal. 
 As the temperature approaches absolute zero, the superfluid approaches 

100% superfluid. 
 The fraction of helium atoms in the superfluid state: 

 Superfluid liquid helium is referred to as a Bose-Einstein 
condensation. 
 not subject to the Pauli exclusion principle 

 all particles are in the same quantum state 
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Liquid Helium 
•  Such a condensation process is not possible with fermions because 

fermions must “stack up” into their energy states, no more than two 
per energy state. 

•  4He isotope is a fermion and superfluid mechanism is radically 
different than the Bose-Einstein condensation. 

•  Use the fermions’ density of states function and substituting for the 
constant EF yields 

 
•  Bosons do not obey the Pauli principle, therefore the density of states 

should be less by a factor of 2.  
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Liquid Helium 
  m is the mass of a helium atom. 
  The number distribution n(E) is now 

  In a collection of N helium atoms the normalization condition is 

 
  Substituting u = E / kT, 
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Liquid Helium 
•  Use minimum value of BBE = 1; this result corresponds 

to the maximum value of N. 

•  Rearrange this, 
 

 The result is T ≥ 3.06 K. 
•  The value 3.06 K is an estimate of Tc. 
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Bose-Einstein Condensation in Gases 
•  By the strong Coulomb interactions among gas particles it 

was difficult to obtain the low temperatures and high 
densities needed to produce the condensate. Finally 
success was achieved in 1995. 

•  First, they used laser cooling to cool their gas of 87Rb atoms 
to about 1 mK. Then they used a magnetic trap to cool the 
gas to about 20 nK. In their magnetic trap they drove away 
atoms with higher speeds and further from the center. What 
remained was an extremely cold, dense cloud at about 170 
nK. 
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