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PHYS 3313 – Section 001 
Lecture #13 

Wednesday, Oct. 23, 2013 
Dr. Jaehoon Yu 

•  Wave Function Normalization 
•  Time-Independent Schrödinger Wave 

Equation 
•  Expectation Values 
•  Operators – Position, Momentum and 

Energy 
•  Infinite Square Well Potential 
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Announcements 
•  Mid-term grade discussion Monday, Oct. 28 

–  In Dr. Yu’s office, CPB 342 
–  Last name begins with A – C: 12:50 – 1:20pm 
–  Last name begins with D – L: 1:20 – 1:50pm 
–  Last name begins with M – Z: 1:50 – 2:20pm 

•  Colloquium today 
–  4pm today, SH101, Dr. X. Chu, U. of Colorado 
–  Double extra credit for this colloquium  
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Consider a wave packet formed by using the wave function that Ae-α|x|, 
where A is a constant to be determined by normalization.  Normalize this 
wave function and find the probabilities of the particle being between 0 and 
1/α, and between 1/α and 2/α.   

Ex 6.4: Normalization 
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Ψ = Ae−α x

Ψ*

−∞

+∞

∫ Ψdx = Ae−α x( )* Ae−α x( )
−∞

+∞

∫ dx =Probabilit
y density A*e−α x( ) Ae−α x( )

−∞

+∞

∫ dx =

= A2e−2α x

−∞

+∞

∫ dx =

Ψ = α e−α x  A = α Normalized Wave Function 

2A2

−2α
e−2α x

0

+∞

= 0 + A
2

α
= 12 A2e−2α x

0

+∞

∫ dx =



Using the wave function, we can compute the probability for a particle to be 
with 0 to 1/α and 1/α to 2/α. 

Ex 6.4: Normalization, cont’d 
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Ψ = α e−α x

P = Ψ*

0

1 α

∫ Ψdx =

For 0 to 1/α: 

For 1/α to 2/α: 

How about 2/α:to ∞? 

αe−2αx
0

1 α

∫ dx =
α
−2α

e−2αx
0

1 α

= − 1
2
e−2 −1( ) ≈ 0.432

P = Ψ*

1 α

2 α

∫ Ψdx = αe−2αx
1 α

2 α

∫ dx =
α
−2α

e−2αx
1 α

2 α

= − 1
2
e−4 − e−2( ) ≈0.059



Properties of Valid Wave Functions 
Boundary conditions 
1)  To avoid infinite probabilities, the wave function must be finite 

everywhere. 
2)  To avoid multiple values of the probability, the wave function must be 

single valued. 
3)  For finite potentials, the wave function and its derivatives must be 

continuous. This is required because the second-order derivative 
term in the wave equation must be single valued. (There are 
exceptions to this rule when V is infinite.) 

4)  In order to normalize the wave functions, they must approach zero as 
x approaches infinity. 

Solutions that do not satisfy these properties do not generally 
correspond to physically realizable circumstances. 
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Time-Independent Schrödinger Wave Equation 
•  The potential in many cases will not depend explicitly on time. 
•  The dependence on time and position can then be separated 

in the Schrödinger wave equation. Let, 
 

 which yields: 
 

 Now divide by the wave function: 
•  The left side of this last equation depends only on time, and 

the right side depends only on spatial coordinates. Hence each 
side must be equal to a constant. The time dependent side is 
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Ψ x,t( ) =

 
iψ x( ) ∂ f t( )

∂t
= −
2 f t( )
2m

∂2ψ x( )
∂x2

+V x( )ψ x( ) f t( )

 
i 1
f t( )

∂ f t( )
∂t

=

 
i 1
f
df
dt

= B

ψ x( ) f t( )

 
− 

2

2m
1

ψ x( )
∂2ψ x( )
∂x2

+V x( )



n  We integrate both sides and find: 

 where C is an integration constant that we may choose to be 0. 
Therefore 

 
 This determines f to be by comparing it to the wave function of a free 
particle 

 
 
n  This is known as the time-independent Schrödinger wave 

equation, and it is a fundamental equation in quantum mechanics. 

Time-Independent Schrödinger Wave Equation(con’t) 
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i df

f∫ = Bdt∫

 
ln f = Bt

i

 f t( ) = eBt i = e− iBt 

 
i 1
f t( )

∂ f t( )
∂t

= E

 
− 

2

2m
d 2ψ x( )
dx2

+V x( )ψ x( ) = Eψ x( )

 ⇒ i ln f =

= e− iωt  ⇒ B  =ω  ⇒ B = ω =

Bt +C

E



Stationary State 
•  Recalling the separation of variables:  
     and with  f(t) =            the wave function can be 

written as: 
•  The probability density becomes: 

 
•  The probability distributions are constant in time. 

This is a standing wave phenomena that is called the 
stationary state. 

e− iωt
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Ψ x,t( ) =ψ x( ) f t( )

Ψ x,t( ) =ψ x( )e− iωt

Ψ*Ψ = ψ 2 x( ) eiωte− iωt( ) =ψ 2 x( )



Comparison of Classical and 
Quantum Mechanics 

•  Newton’s second law and Schrödinger’s wave equation 
are both differential equations. 

•  Newton’s second law can be derived from the 
Schrödinger wave equation, so the latter is the more 
fundamental. 

•  Classical mechanics only appears to be more precise 
because it deals with macroscopic phenomena. The 
underlying uncertainties in macroscopic measurements 
are just too small to be significant due to the small size 
of the Planck’s constant 
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Expectation Values 
•  In quantum mechanics, measurements can only be expressed in terms 

of average behaviors since precision measurement of each event is 
impossible (what principle is this?) 

•  The expectation value is the expected result of the average of many 
measurements of a given quantity. The expectation value of x is 
denoted by <x>. 

•  Any measurable quantity for which we can calculate the expectation 
value is called a physical observable. The expectation values of 
physical observables (for example, position, linear momentum, angular 
momentum, and energy) must be real, because the experimental 
results of measurements are real. 

•  The average value of x is  
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x = N1x1 + N2x2 + N3x3 + N4x4 +

N1 + N2 + N3 + N4 +
=

Nixi
i
∑

Ni
i
∑



Continuous Expectation Values 
•  We can change from discrete to 

continuous variables by using 
the probability P(x,t) of 
observing the particle at a 
particular x. 

•  Using the wave function, the 
expectation value is: 

•  The expectation value of any 
function g(x) for a normalized 
wave function: 
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x =
xP x( )dx

−∞

+∞

∫
P x( )dx

−∞

+∞

∫

x =
xΨ x,t( )*Ψ x,t( )dx

−∞

+∞

∫
Ψ x,t( )*Ψ x,t( )dx

−∞

+∞

∫

g x( ) = Ψ x,t( )* g x( )Ψ x,t( )dx
−∞

+∞

∫



Momentum Operator 
•  To find the expectation value of p, we first need to represent p in 

terms of x and t. Consider the derivative of the wave function of a free 
particle with respect to x: 

 

 With k = p / ħ  we have 
 

 This yields 
 
•  This suggests we define the momentum operator as             . 
•  The expectation value of the momentum is 
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∂Ψ
∂x

= ∂
∂x

ei kx−ωt( )⎡⎣ ⎤⎦ =
∂Ψ
∂x

=

p Ψ x,t( )⎡⎣ ⎤⎦ =

 
p̂ = −i ∂

∂x

p =

ikei kx−ωt( ) = ikΨ

 
i p

Ψ

 
−i

∂Ψ x,t( )
∂x

Ψ* x,t( )
−∞

+∞

∫ p̂Ψ x,t( )dx =
 
−i Ψ* x,t( )

−∞

+∞

∫
∂Ψ x,t( )

∂x
dx



Position and Energy Operators 
n  The position x is its own operator as seen above. 
n  The time derivative of the free-particle wave function 

is 
 

 Substituting ω = E / ħ  yields   
 
n  The energy operator is 
n  The expectation value of the energy is 

Wednesday, Oct. 23, 2013 PHYS 3313-001, Fall 2013                      
Dr. Jaehoon Yu 

14 

∂Ψ
∂t

=

E Ψ x,t( )⎡⎣ ⎤⎦ =

 
Ê = i ∂

∂t

E =

∂
∂t

ei kx−ωt( )⎡⎣ ⎤⎦ = −iωei kx−ωt( ) = −iωΨ

 
i
∂Ψ x,t( )

∂t

Ψ* x,t( )
−∞

+∞

∫ ÊΨ x,t( )dx =
 
i Ψ* x,t( )

−∞

+∞

∫
∂Ψ x,t( )

∂t
dx


