
Monday, Nov. 4, 2013 PHYS 3313-001, Fall 2013                      
Dr. Jaehoon Yu 

1 

PHYS 3313 – Section 001 
Lecture #15 

Monday, Nov. 4, 2013 
Dr. Jaehoon Yu 

•  Finite Potential Well 
•  Penetration Depth 
•  Degeneracy 
•  Simple Harmonic Oscillator 
•  Barriers and Tunneling 
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Announcements 
•  Reminder: Homework #5 

–  CH6 end of chapter problems: 3, 5, 11, 14, 22, and 26 
–  Due on this Wednesday, Nov. 6 in class  

•  Quiz #3  
–  At the beginning of the class this Wed., Nov. 6 
–  Covers CH5.6 to what we cover today (CH6.6?) 
–  Prepare your own formula sheet 

•  Research paper template is posted onto the research link 
–  Deadline for research paper submission is Monday, Dec. 2!! 

•  Colloquium coming week 
–  4pm Monday, Nov. 4, SH101, Dr. Yujie Ding of Lehigh Univ., Double extra credit 
–  4pm Wednesday, Nov. 6, SH101, Dr. David Nygren of Lorentz Berkeley National 

Laboratory, Triple extra credit 
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Reminder: Special project #5 
n Show that the Schrodinger equation 

becomes Newton’s second law.  (15 points) 
n Deadline Monday, Nov. 11, 2013 
n You MUST have your own answers! 
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Finite Square-Well Potential 
•  The finite square-well potential is 

•  The Schrödinger equation outside the finite well in regions I and III is 

    for regions I and III, or using 

 

 yields      . The solution to this differential has exponentials of the 
form eαx and e-αx.  In the region x > L, we reject the positive exponential 
and in the region x < 0, we reject the negative exponential.  Why? 

  

€ € 
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V x( ) =
V0       x ≤ 0,
0       0 < x < L
V0      x ≥ L

⎧
⎨
⎪

⎩⎪

 
− 

2

2m
1
ψ
d 2ψ
dx2

= E −V0  α
2 = 2m V0 − E( ) 2

d 2ψ
dx2

=α 2ψ

ψ I x( ) = Aeαx       region I, x < 0
ψ III x( ) = Ae−αx    region III, x > L

This is because the wave function 
should be 0 as xàinfinity. 



•  Inside the square well, where the potential V is zero and the particle is free, the 
wave equation becomes             where  

•  Instead of a sinusoidal solution we can write  

•  The boundary conditions require that 

 and the wave function must be smooth where the regions meet. 
•  Note that the  

wave function is  
nonzero outside  
of the box.  

•  Non-zero at the  
boundary either.. 

•  What would the  
energy look like? 

Finite Square-Well Solution 
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d 2ψ
dx2

= −k2ψ  k = 2mE 2

ψ II x( ) = Ceikx + De− ikx   region II,  0<x < L

ψ I =ψ II  at x = 0 and ψ I =ψ III  at x = L  



Penetration Depth 
•  The penetration depth is the distance outside the 

potential well where the probability significantly 
decreases. It is given by 

 
•  It should not be surprising to find that the penetration 

distance that violates classical physics is proportional 
to Planck’s constant. 
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δ x ≈ 1
α

=
 



2m V0 − E( )



•  The wave function must be a function of all three spatial coordinates.  

•  We begin with the conservation of energy 
•  Multiply this by the wave function to get 
 
 
•  Now consider momentum as an operator acting on the wave function. 

In this case, the operator must act twice on each dimension. Given: 

 
•  The three dimensional Schrödinger wave equation is 

                 

Three-Dimensional Infinite-Potential Well 
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E = K +V =

Eψ = p2

2m
+V

⎛
⎝⎜

⎞
⎠⎟
ψ =

p2

2m
ψ +Vψ

p2 = px
2 + py

2 + pz
2

 
− 

2

2m
∂2ψ
∂x2

+ ∂2ψ
∂y2

+ ∂2ψ
∂z2

⎛
⎝⎜

⎞
⎠⎟
+Vψ = Eψ

 
p̂yψ = −i ∂ψ

∂y  
p̂zψ = −i ∂ψ

∂z 
p̂xψ = −i ∂ψ

∂x

 
− 

2

2m
∇2ψ +Vψ = EψRewrite 

p2

2m
+V



Consider a free particle inside a box with lengths L1, L2 and L3 along the x, y, and z axes, 
respectively, as shown in the Figure.  The particle is constrained to be inside the box.  Find 
the wave functions and energies.  Then find the ground energy and wave function and the 
energy of the first excited state for a cube of sides L.  

Ex 6.10: Expectation values inside a box 
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What are the boundary conditions for this situation? 

ψ x, y, z( ) = Asin k1x( )sin k2y( )sin k3z( )

Particle is free, so x, y and z wave functions are independent from each other! 
Each wave function must be 0 at the wall! Inside the box, potential V is 0. 

 
− 

2

2m
∇2ψ +Vψ = Eψ

A reasonable solution is  

ψ = 0 at x = L1 ⇒ k1L1 = n1π ⇒
k1 =

n1π
L1

Using the boundary condition 

So the wave numbers are   k2 =
n2π
L2

k3 =
n3π
L3

k1 = n1π L1

 
⇒− 

2

2m
∇2ψ = Eψ



Consider a free particle inside a box with lengths L1, L2 and L3 along the x, y, and z axes, 
respectively, as shown in Fire.  The particle is constrained to be inside the  box.  Find the 
wave functions and energies.  Then find the round energy and wave function and the energy 
of the first excited state for a cube of sides L.  

Ex 6.10: Expectation values inside a box 
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The energy can be obtained through the Schrödinger equation 

∂ψ
∂x

= ∂
∂x

Asin k1x( )sin k2y( )sin k3z( )( ) =
 
− 

2

2m
∇2ψ =

∂2ψ
∂x2

= ∂2

∂x2
Asin k1x( )sin k2y( )sin k3z( )( ) =

 
− 

2

2m
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ψ =

 
E = 

2

2m
k1
2 + k2

2 + k3
2( ) =

 
− 

2

2m
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ψ = Eψ

 

π 22

2m
n1
2

L1
2 +

n2
2

L2
2 +

n3
2

L3
2

⎛
⎝⎜

⎞
⎠⎟

What is the ground state energy? 

When are the energies the same 
for different combinations of ni? 

E1,1,1 when n1=n2=n3=1, how much?  

2

2m
k1
2 + k2

2 + k3
2( )ψ = Eψ

k1Acos k1x( )sin k2y( )sin k3z( )

−k1
2Asin k1x( )sin k2y( )sin k3z( ) = −k1

2ψ



Degeneracy* 
•  Analysis of the Schrödinger wave equation in three 

dimensions introduces three quantum numbers that 
quantize the energy.  

•  A quantum state is degenerate when there is more 
than one wave function for a given energy. 

•  Degeneracy results from particular properties of the 
potential energy function that describes the system. 
A perturbation of the potential energy, such as the 
spin under a B field, can remove the degeneracy. 
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*Mirriam-webster: having two or more states or subdivisions having two or more states or subdivisions  



The Simple Harmonic Oscillator 
•  Simple harmonic oscillators describe many physical situations: springs, diatomic molecules 

and atomic lattices.   

•  Consider the Taylor expansion of a potential function: 

 The minimum potential at x=x0, so dV/dx=0 and V1=0; and the zero potential V0=0, we 
have 

 Substituting this into the wave equation: 

   
 Let              and    which yields     . 
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V x( ) =V0 +V1 x − x0( ) + 1

2
V2 x − x0( )2 +

V x( ) = 1
2
V2 x − x0( )2

 

d 2ψ
dx2

= − 2m
2

E −κ x
2

2
⎛
⎝⎜

⎞
⎠⎟
ψ =

 
α 2 = mκ

2  
β = 2mE

2
d 2ψ
dx2

= α 2x2 − β( )ψ
 
− 2m
2

E + mκ x
2

2
⎛
⎝⎜

⎞
⎠⎟
ψ

F = −κ x − x0( )



Parabolic Potential Well 

•  If the lowest energy level is zero, this violates the uncertainty principle. 
•  The wave function solutions are               where Hn(x) are Hermite 

polynomials of order n. 
•  In contrast to the particle in a box, where the oscillatory wave function is a sinusoidal 

curve, in this case the oscillatory behavior is due to the polynomial, which dominates 
at small x. The exponential tail is provided by the Gaussian function, which 
dominates at large x. 
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ψ n = Hn x( )e−αx2 2



Analysis of the Parabolic Potential Well 

•  The energy levels are given by 

•  The zero point energy is called the Heisenberg limit: 

•  Classically, the probability of finding the mass is 
greatest at the ends of motion’s range and smallest at 
the center (that is, proportional to the amount of time 
the mass spends at each position). 

•  Contrary to the classical one, the largest probability for 
this lowest energy state is for the particle to be at the 
center. 
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En = n + 1

2
⎛
⎝⎜

⎞
⎠⎟  κ m =

 
E0 =

1
2
ω

 
n + 1

2
⎛
⎝⎜

⎞
⎠⎟ ω


