PHYS 3313 – Section 001 Lecture #19

Monday, Nov. 18, 2013 Dr. <mark>Jaehoon</mark> Yu

- Orbital Angular Momentum Quantum Number
- Magnetic Quantum Number
- The Zeeman Effect
- Intrinsic Spin
- Electron Energy Levels
- Selection Rules
- Probability Distributions
- Statistics

Announcements

- Homework #7
 - CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29
 - Due on Monday, Nov. 25, in class
- Quiz number 4
 - At the beginning of the class Monday, Nov. 25
 - Covers CH7 and what we finish this Wednesday
- Reading assignments
 - Entire CH8 (in particular CH8.1), CH9.4 and CH9.7
- Class is cancelled on Wednesday, Nov. 27

Group Number	Reseasrch Group Members	Research Topic	Presentation Date and Order
1	Z.Citty, S. Lagerson, K. McElvain, J. Vellarreal	Michelson-Morley Experiment	#6, Dec. 2
2	W. Brown, C. Hair, R. Reyes, H. Zapata	The Photo-Electric Effect	#2, Dec. 2
3	R. Clark, M. Kruse, C. Nguyen, B. Watson	The Unification of Electromagnetic and Weak Forces	#3, Dec. 2
4	J. Bolton, J. Day, B. Nuar,	Discovery of Electron	#6, Dec. 4
5	J. Bowerman, C. McNutt, M. Obiang, E. Perez	The property of molecules - the Brownian Motions	#4, Dec. 2
6	N. Boseman, V. Hopkins, S. Moorman, S. Moriaty	Black-body Radiation	#1, Dec. 4
7	E. Bainglass, J. Chavez, K. Izuagbe,	Rutherford Scattering	#3, Dec. 4
8	E. Blomberg, E. Duran, J. Grandinatti, R. Loew	The Discovery of Radioactivity	#1, Dec. 2
9	P. Conlin, J. Guevara, F. Islam, A. Nelson	Special Relativity	#5, Dec. 2
10	G. Brown, G. Collier, B. Ferguson, R. Subramaniam	Compton Effect	#2, Dec. 4
11	K. Brackney, C. Dunn, S. Schroeder, S. Sheladia	Super-Conductivity	#4, Dec. 4
Mono 12	ay, Nova18a201,3c. Jay, C. Smith, J. Umphress	PHYS 3313-001, Fall 2013 The discovery of the Higgs particle	3 #5, Dec. 4

1. Must contain the following at the minimum

- - Original theory or Original observation
 - Experimental proofs or Theoretical prediction + subsequent experimental proofs
 - Importance and the impact of the theory/experiment
 - Conclusions
- 2. Each member of the group writes a 10 (max) page report, including figures
 - 10% of the total grade
 - Can share the theme and facts but you must write your own!
 - Text of the report must NOT be a copy
 - Due Mon., Dec. 2, 2013

Research Presentations

- Each of the 10 research groups makes a 10min presentation
 - 8min presentation + 2min Q&A
 - All presentations must be in power point
 - I must receive all final presentation files by 8pm, Sunday, Dec. 1
 - No changes are allowed afterward
 - The representative of the group makes the presentation followed by all group members' participation in the Q&A session
- Date and time:
 - In class Monday, Dec. 2 or in class Wednesday, Dec. 4
- Important metrics
 - Contents of the presentation: 60%
 - Inclusion of all important points as mentioned in the report
 - The quality of the research and making the right points
 - Quality of the presentation itself: 15%
 - Presentation manner: 10%
 - Q&A handling: 10%
 - Staying in the allotted presentation time: 5%
 - Judging participation and sincerity: 5%

Solution of the Angular and Azimuthal Equations

- The radial wave function *R* and the spherical harmonics *Y* determine the probability density for the various quantum states.
- Thus the total wave function $\psi(\mathbf{r},\theta,\phi)$ depends on n, ℓ , and m_{ℓ} . The wave function can be written as

$$\boldsymbol{\psi}_{nlm_l}(\boldsymbol{r},\boldsymbol{\theta},\boldsymbol{\phi}) = \boldsymbol{R}_{nl}(\boldsymbol{r})\boldsymbol{Y}_{lm_l}(\boldsymbol{\theta},\boldsymbol{\phi})$$

Orbital Angular Momentum Quantum Number *l*

- It is associated with the R(r) and $f(\theta)$ parts of the wave function.
- Classically, the orbital angular momentum $\vec{L} = \vec{r} \times \vec{p}$ with $L = mv_{\text{orbital}}r$.
- ℓ is related to the magnitude of *L* by $L = \sqrt{l(l+1)}\hbar$.
- In an ℓ = 0 state, $L = \sqrt{0(1)}\hbar = 0$.

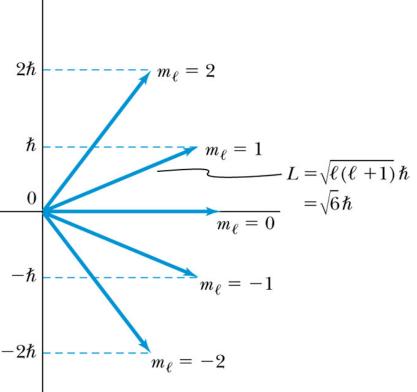
It disagrees with Bohr's semi-classical "planetary" model of electrons orbiting a nucleus $L = n\hbar$.

Orbital Angular Momentum Quantum Number ℓ

- Certain energy level is degenerate with respect to ℓ when the energy is independent of ℓ .
- Use letter names for the various *l* values

 $-\ell = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \dots$ - Letter = s p d f g h \dots

- Atomic states are referred by their n and ℓ
 - s=sharp, p=principal, d=diffuse, f =fundamental, then alphabetical
- A state with n = 2 and l = 1 is called the 2p state
 Is 2d state possible?
- The boundary conditions require $n > \ell$


Magnetic Quantum Number m_{ℓ}

- The angle φ is a measure of the rotation about the z axis.
- The solution for $g(\phi)$ specifies that m_{ℓ} is an integer and related to the *z* component of *L*.

$$L_z = m_l \hbar$$

- The relationship of L, L_z , Q, and m_Q for Q = 2.
- $L = \sqrt{l(l+1)}\hbar = \sqrt{6}\hbar$ is fixed.
- Because L_z is quantized, only certain orientations of \vec{L} are possible and this is called **space quantization**.
- *m*_ℓ is called the magnetic moment since z axis is chosen customarily along the direction of magnetic field.
 Monday, Nov. 18, 2013

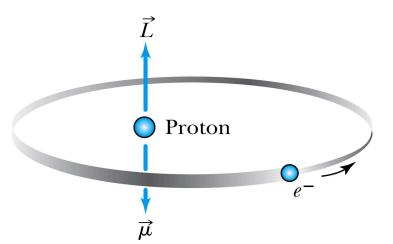
9

Magnetic Quantum Number m_{ℓ}

- Quantum mechanics allows \vec{L} to be quantized along only one direction in space and because of the relationship $L^2 = L_x^2 + L_y^2 + L_z^2$, once a second component is known, the third component will also be known. \rightarrow violation of uncertainty principle
 - One of the three components, such as L_z, can be known clearly but the other components will not be precisely known
- Now, since we know there is no preferred direction,

$$\left\langle L_x^2 \right\rangle = \left\langle L_y^2 \right\rangle = \left\langle L_z^2 \right\rangle$$

• We expect the average of the angular momentum components squared to be: $\langle L^2 \rangle = 3 \langle L_z^2 \rangle = \frac{3}{2l+1} \sum_{m=-l}^{+l} m_l^2 \hbar^2 = l(l+1)\hbar^2$


Magnetic Effects on Atomic Spectra— The Normal Zeeman Effect

• A Dutch physicist Pieter Zeeman showed as early as 1896 that the spectral lines emitted by atoms in a magnetic field split into multiple energy levels. It is called the **Zeeman effect**.

The Normal Zeeman effect:

- A spectral line of an atom is split into three lines.
- Consider the atom to behave like a small magnet.
- The current loop has a magnetic moment $\mu = IA$ and the period $T = 2\pi r / v$. If an electron can be considered as orbiting a circular current loop of I = dq / dt around the nucleus, we obtain $\mu = IA = qA/T = \pi r^2 (-e)/(2\pi r/v) = -erv/2 = -\frac{e}{2m}mrv = -\frac{e}{2m}L$
- $\vec{\mu} = -\frac{e}{2m}\vec{L}$ where L = mvr is the magnitude of the orbital angular momentum

- Since there is no magnetic field to align them, μ points in random directions.
- The dipole has a potential energy

$$V_{B} = -\vec{\mu} \cdot \vec{B}$$

• The angular momentum is aligned with the magnetic moment, and the torque between μ and B causes a precession of μ .

$$\mu_z = \frac{e}{2m}L_z = \frac{e\hbar}{2m}m_l = -\mu_B m_l$$

Where $\mu_{\rm B} = e\hbar/2m$ is called the **Bohr magneton**.

 μ cannot align exactly in the z direction and has only certain allowed quantized orientations.

$$\vec{\mu} = -\frac{\mu_B \vec{L}}{\hbar}$$

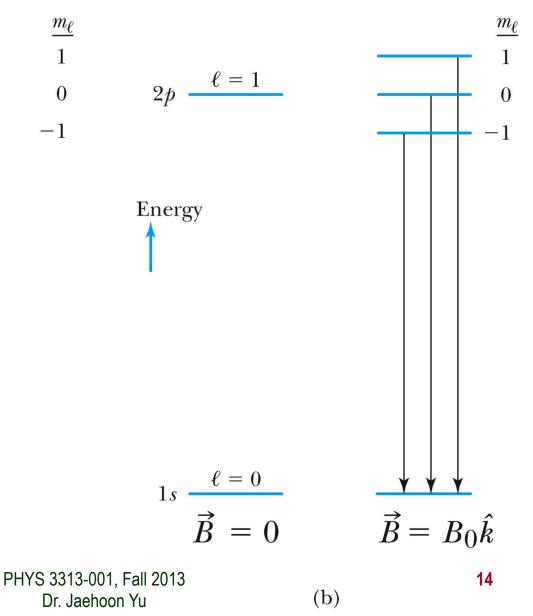
• The potential energy is quantized due to the magnetic quantum number m_{ℓ} .

$$V_B = -\mu_z B = +\mu_B m_l B$$

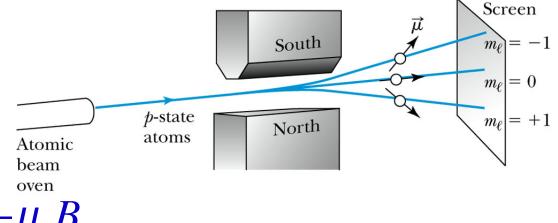
• When a magnetic field is applied, the 2*p* level of atomic hydrogen is split into three different energy states with the electron energy difference of $\Delta E = \mu_{\rm B} B \Delta m_{\ell}$.

m _e	Energy
1	$E_0 + \mu_{\rm B}B$
0	E ₀
-1	$E_0 - \mu_{\rm B}B$

$$n = 2 \quad \ell = 1$$
$$\vec{B} = 0$$


• So split is into a total of 2*l*+1 energy states

Monday, Nov. 18, 2013


PHYS 3313-001, Fall 2013 Dr. Jaehoon Yu

- A transition $\frac{m_{\ell}}{0}$ from 1s to 2p $^{-1}$
- A transition from 2p to 1s

• An atomic beam of particles in the ℓ = 1 state pass through a magnetic field along the *z* direction. (Stern-Gerlach experiment)

- $V_B = -\mu_z B$
- $F_z = -(dV_B/dz) = \mu_z(dB/dz)$
- The m_ℓ = +1 state will be deflected down, the m_ℓ = -1 state up, and the m_ℓ = 0 state will be undeflected. → saw only 2 with silver atom
- If the space quantization were due to the magnetic quantum number m_{ℓ} , the number of m_{ℓ} states is always odd at $(2\ell + 1)$ and should have produced an odd number of lines. Monday, Nov. 18, 2013 PHYS 3313-001, Fall 2013 15 Dr. Jaehoon Yu

Intrinsic Spin

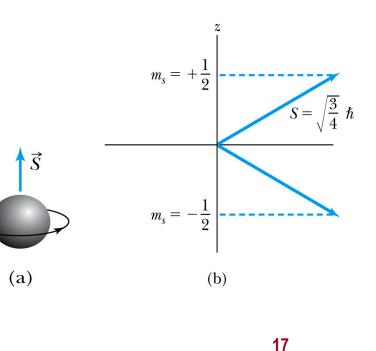
- In 1920, to explain spectral line splitting of Stern-Gerlach experiment, Wolfgang Pauli proposed the forth quantum number assigned to electrons
- In 1925, Samuel Goudsmit and George Uhlenbeck in Holland proposed that the <u>electron must have an intrinsic angular momentum</u> and therefore a magnetic moment.
- Paul Ehrenfest showed that the surface of the spinning electron should be moving faster than the speed of light to obtain the needed angular momentum!!
- In order to explain experimental data, Goudsmit and Uhlenbeck proposed that the electron must have an **intrinsic spin quantum number** $s = \frac{1}{2}$.

Intrinsic Spin

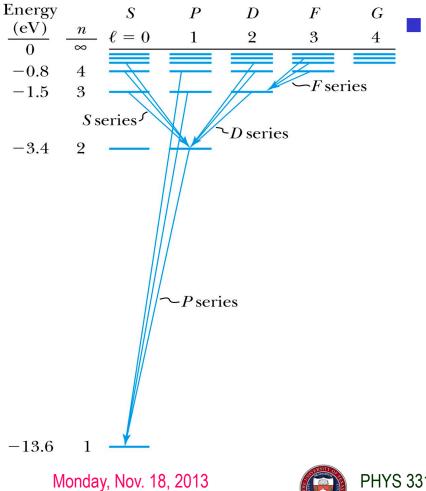
- The spinning electron reacts similarly to the orbiting electron in a magnetic field. (Dirac showed that this is necessary due to special relativity..)
- We should try to find L, L_z, ℓ , and m_{ℓ} .
- The magnetic spin quantum number m_s has only two values, $m_s = \pm \frac{1}{2}$.

The electron's spin will be either "up" or "down" and can never be spinning with its magnetic moment μ_s exactly along the z axis.

For each state of the other quantum numbers, there are two spins values


The intrinsic spin angular momentum

vector
$$\left| \vec{S} \right| = \sqrt{s(s+1)}\hbar = \sqrt{3/4}\hbar$$


Monday, Nov. 18, 2013

PHYS 3313-001, Fall 2013 Dr. Jaehoon Yu

Energy Levels and Electron Probabilities For hydrogen, the energy level depends on the principle quantum number *n*.

In ground state an atom cannot emit radiation. It can absorb electromagnetic radiation, or gain energy through inelastic bombardment by particles.

Selection Rules

- We can use the wave functions to calculate transition probabilities for the electron to change from one state to another.
- Allowed transitions: Electrons absorbing or emitting photons can change states when $\Delta \ell = \pm 1$. (Evidence for the photon carrying one unit of angular momentum!)

 Δ n=anything $\Delta \ell = \pm 1$ $\Delta m_{\ell} = 0, \pm 1$

Forbidden transitions: Other transitions possible but occur with much smaller probabilities when $\Delta \ell \neq \pm 1$.

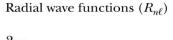
- We must use wave functions to calculate the probability distributions of the electrons.
- The "position" of the electron is spread over space and is not well defined.
- We may use the radial wave function *R*(*r*) to calculate radial probability distributions of the electron.
- The probability of finding the electron in a differential volume element $d\tau$ is

$$dP = \psi^*(r,\theta,\phi)\psi(r,\theta,\phi)d\tau$$

The differential volume element in spherical polar coordinates is

$$d\tau = r^2 \sin\theta dr d\theta d\phi$$

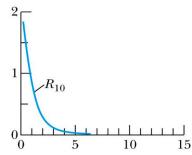
Therefore,

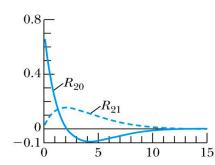

$$P(r)dr = r^{2}R^{*}(r)R(r)dr\int_{0}^{\pi} |f(\theta)|^{2}\sin\theta d\theta \int_{0}^{2\pi} g(\phi)d\phi$$

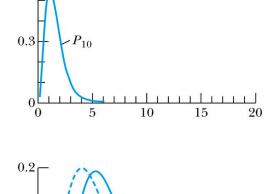
We are only interested in the radial dependence.

$$P(r)dr = r^2 \left| R(r) \right|^2 dr$$

The radial probability density is $P(r) = r^2 |R(r)|^2$ and it depends only on *n* and *l*.


Radial probability distribution $(P_{n\ell})$


0.6


0.1

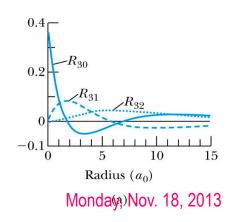
0

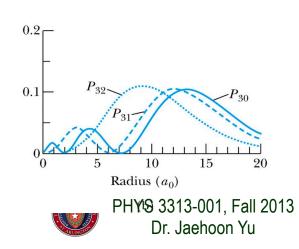
0

 $-P_{20}$

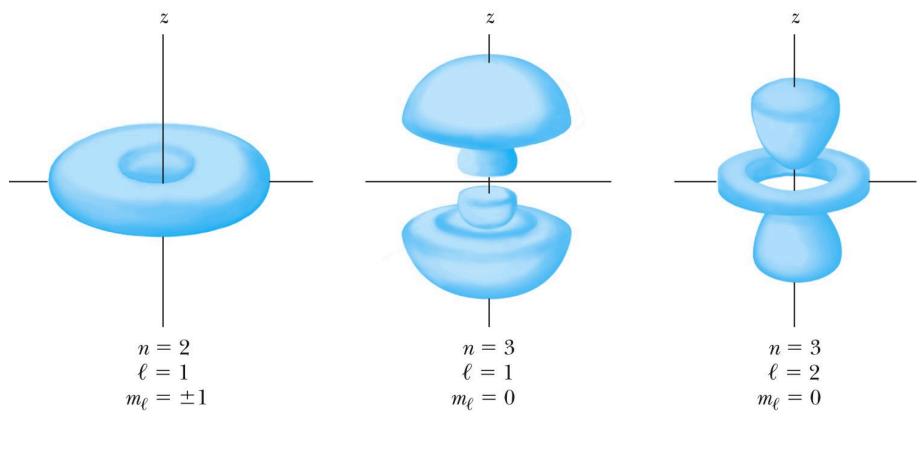
10

TII


20


15

 P_{21}


5

 R(r) and P(r) for the lowest-lying states of the hydrogen atom

• The probability density for the hydrogen atom for three different electron states

Monday, Nov. 18, 2013

PHYS 3313-001(,**b**F)all 2013 Dr. Jaehoon Yu

23