
Wednesday, Nov. 20, 
2013 

PHYS 3313-001, Fall 2013                      
Dr. Jaehoon Yu 

1 

PHYS 3313 – Section 001 
Lecture #20 

Wednesday, Nov. 20, 2013 
Dr. Jaehoon Yu 

• Historical Overview 
• Maxwell Velocity Distribution  
• Equipartition Theorem  
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Announcements 
•  Reminder: Homework #7 

–  CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29 
–  Due coming Monday, Nov. 25, in class  

•  Reminder: Quiz number 4 
–  At the beginning of the class coming Monday, Nov. 25 

–  Covers CH7 and what we finish today 

•  Reminder: Research materials 
–  Presentation submission via e-mail to Dr. Yu by 8pm Sunday, Dec. 1 

–  Research papers due in class Monday, Dec. 2 

•  Final exam: 
–  Comprehensive exam covering CH1.1 to what we cover Monday, Nov. 25 + appendices 3 – 7 

–  BYOF: one handwritten, letter size, front and back 

•  Reading assignments 
–  Entire CH8 (in particular CH8.1), CH9.4 and CH9.7  

•  Class is cancelled next Wednesday, Nov. 27 

•  Colloquium today: Dr. B. Franklin of Baylor U. 





Why is statistical physics necessary? 
•  Does physics perceive inherent uncertainty and 

indeterminism since everything is probabilistic? 
•  Statistical physics is necessary since 

–  As simple problems as computing probability of coin tosses is 
complex, so it is useful to reduce it to statistical terms 

–  When the number of particles gets large, it is rather impractical 
to describe the motion of individual particle than describing the 
motion of a group of particles 

–  Uncertainties are inherent as Heisenberg’s uncertainty principle 
showed and are of relatively large scale in atomic and 
subatomic level 

•  Statistical physics necessary for atomic physics and the 
description of solid states which consists of many atoms 
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Historical Overview 
•  Statistics and probability: New mathematical methods developed 

to understand the Newtonian physics through 18th and 19th  centuries. 
•  Lagrange around 1790 and Hamilton around 1840 added 

significantly to the computational power of Newtonian mechanics. 
•  Pierre-Simon de Laplace (1749-1827) 

–  Had a view that it is possible to have a perfect knowledge of the universe 
–  Can predict the future and the past to the beginning of the universe 
–  He told Napoleon that the hypothesis of God is not necessary 
–  He made major contributions to the theory of probability  

•  Benjamin Thompson (Count Rumford): Put forward the idea of 
heat as merely the motion of individual particles in a substance but 
not well accepted 

•  James Prescott Joule: Demonstrated experimentally the 
mechanical equivalence of heat and energy 
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Joule’s experiment 
•  Showed deterministically the equivalence of heat 

and energy 

•  Dropping weights that turns the paddles in the water 
and measuring the change of water temperature 
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Historical Overview 
•  James Clark Maxwell 

–  Brought the mathematical theories of probability and 
statistics to bear on the physical thermodynamics 
problems 

–  Showed that distributions of an ideal gas can be used 
to derive the observed macroscopic phenomena 

–  His electromagnetic theory succeeded to the statistical 
view of thermodynamics 

•  Einstein: Published a theory of Brownian motion, a 
theory that supported the view that atoms are real 

•  Bohr: Developed atomic and quantum theory 
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Maxwell’s Velocity Distributions 
•  Laplace claimed that it is possible to know everything about 

an ideal gas by knowing the position and velocity precisely 

•  There are six parameters—the position (x, y, z) and the 
velocity (vx, vy, vz)—per molecule to know the position and 
instantaneous velocity of an ideal gas. 

•  These parameters make up 6D phase space   

•  The velocity components of the molecules are more important 
than positions because the energy of a gas should depend 
only on the velocities 

•  Define a velocity distribution function = the probability of 
finding a particle with velocity between                           
where 
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Maxwell’s Velocity Distributions 
•  Maxwell proved that the probability distribution function is proportional 

to                               

 Therefore                          . 

 where C is a proportionality constant and β ≡ (kT)−1.  

•  Since v2 = vx
2 + vy

2 + vz
2, 

•  Rewrite this as the product of three factors (i.e. probability density). 

exp − 1
2 mv2 kT( )
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f v
( )d 3v = C exp − 1

2 βmv
2( )d 3v

 
f v
( )d 3v = C exp − 1

2 βm vx
2 + vy

2 + vz
2( )⎡⎣ ⎤⎦d

3v


 
f v
( )d 3v = Cg vx( )g vy( )g vz( )dvxdvydvz

g vx( )dvx = C ' exp − 1
2 βmvx

2( )dvx
g vy( )dvy = C ' exp − 1

2 βmvy
2( )dvy

g vz( )dvz = C ' exp − 1
2 βmvz

2( )dvz



The solution 
•  Since the probability is 1 when integrated over entire space, we obtain 

•  Thus  

•  The average velocity in x direction is 

•  The average of the square of the velocity in x direction is    

•  Where T is the absolute temperature (temp in C+273), m is the 
molecular mass and k is the Boltzman constant   
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g vx( )dvx−∞
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∫ = C ' 2π
βm
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= 1

g vx( )dvx =

vx = vxg vx( )dvx−∞

+∞

∫ =

vx
2 =

C ' = βm
2π
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3 2

= 1
βm

= kT
m

k = 1.38 ×10−23 J K

Solve for C’ 

C ' vx exp − 1
2
βmvx

2⎛
⎝⎜

⎞
⎠⎟ dvx−∞

+∞

∫ =0
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2π
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⎞
⎠⎟ dvx

C ' vx
2 exp − 1

2
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∫



Maxwell Velocity Distribution 
n The results for the x, y, and z velocity components 

are identical. 

n The mean translational kinetic energy of a molecule: 

 

n Purely statistical consideration is a good evidence 
of the validity of this statistical approach to 
thermodynamics. 

n Note no dependence of the formula to the mass!! 
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K = 1
2
mv2 = 1

2
m vx

2 + vy
2 + vz

2( ) = 12m
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m

⎛
⎝⎜

⎞
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Compute the mean translational KE of (a) a single ideal gas molecule in eV 
and (b) a mol of ideal gas in J at room temperature 20oC. 

Ex 9.1: Molecule Kinetic Energy 
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(a)K = 3
2
kT =

(b)K =

= 0.038 eV( ) ≈ 1
25

eV( )

3
2
1.38 ×10−23( ) ⋅ 273+ 20( ) = 6.07 ×10−21 J( ) =

3
2
kT⎛

⎝⎜
⎞
⎠⎟ NA =

3
2
1.38 ×10−23( ) ⋅ 273+ 20( )⎡

⎣⎢
⎤
⎦⎥
⋅6.02 ×1023 =

= 6.07 ×10−21 ⋅6.02 ×1023 J( ) = 3650 J( )
What is the mean translational KE of 1kg of steam at 1atm at 100oC, 
assuming an ideal gas?  Water molecule is 18g/mol. 


