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PHYS 3313 – Section 001 
Lecture #21 

Monday, Nov. 25, 2013 
Dr. Jaehoon Yu 

• Equipartition Theorem  
• Classical and Quantum Statistics  
• Fermi-Dirac Statistics 
• Liquid Helium 
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Announcements 
•  Reminder: Research materials 

–  Presentation submission via e-mail to Dr. Yu by 8pm this Sunday, Dec. 1 

–  Research papers due in class Monday, Dec. 2 

•  Final exam: 
–  Date and time: 11am – 1:30pm, Monday, Dec. 9, in SH125 

–  Comprehensive exam covering CH1.1 to CH9.7 + appendices 3 – 7 

–  BYOF: one handwritten, letter size, front and back 
•  No derivations or solutions of any problems allowed! 

•  Reading assignments 
–  CH9.6 and CH9.7  

•  Class is cancelled this Wednesday, Nov. 27 

•  Colloquium today at 4pm in SH101 
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Reminder: Research Project Report 
1.  Must contain the following at the minimum  

–  Original theory or Original observation 
–  Experimental proofs or Theoretical prediction + 

subsequent experimental proofs 
–  Importance and the impact of the theory/experiment 
–  Conclusions 

2.  Each member of the group writes a 10 (max) page 
report, including figures 

–  10% of the total grade 
–  Can share the theme and facts but you must write your 

own! 
–  Text of the report must be your original! 
–  Due Mon., Dec. 2, 2013 
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Research Presentations 
•  Each of the 10 research groups makes a 10min presentation 

–  8min presentation + 2min Q&A 
–  All presentations must be in power point 
–  I must receive all final presentation files by 8pm, Sunday, Dec. 1 

•  No changes are allowed afterward 

–  The representative of the group makes the presentation followed by all group 
members’ participation in the Q&A session 

•  Date and time:  
–  In class Monday, Dec. 2 or in class Wednesday, Dec. 4 

•  Important metrics 
–  Contents of the presentation: 60% 

•  Inclusion of all important points as mentioned in the report 
•  The quality of the research and making the right points 

–  Quality of the presentation itself: 15% 
–  Presentation manner: 10% 
–  Q&A handling: 10% 
–  Staying in the allotted presentation time: 5% 
–  Judging participation and sincerity: 5% 



Equipartition Theorem 
•  The formula for average kinetic energy 3kT/2 works for 

monoatomic molecule what is it for diatomic molecule? 

•  Consider oxygen molecule as two oxygen atoms 
connected by a massless rod è This will have both 
translational and rotational energy 

•  How much rotational energy is there and how is it related 
to temperature? 

•  Equipartition Theorem: 
–  In equilibrium a mean energy of ½ kT per molecule is associated 

with each independent quadratic term in the molecule’s energy. 

–  Each independent phase space coordinate: degree of freedom 
–  Essentially the mean energy of a molecule is ½ kT *NDoF 
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Equipartition Theorem 
n  In a monoatomic ideal gas, each molecule has 

n  There are three degrees of freedom. 

n  Mean kinetic energy is  

n  In a gas of N helium molecules, the total internal energy is 

 

n  The heat capacity at constant volume is   

n  For the heat capacity for 1 mole, 

 

n  using the ideal gas constant R = 8.31 J/K. 

K =

3 1
2 kT( ) = 3

2 kT

U = NE = 3
2 NkT

CV = ∂U
∂T

=

cV = 3
2 NAk =
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3
2 Nk

3
2 R = 12.5 J K

1
2 mv

2 = 1
2 m vx

2 + vy
2 + vz

2( )



The Rigid Rotator Model 
n  For diatomic gases, consider the rigid rotator model. 

 

n  The molecule has rotational E only when it rotates about x or y axis. 

n  The corresponding rotational energies are  

n  There are five degrees of freedom (three translational and two 
rotational)è resulting in mean energy of 5kT/2 per molecule 
according to equi-partition principle (CV=5R/2) 

1
2 Ixω x

2 and 1
2 Iyω y

2
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Table of Measured Gas Heat Capacities 
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Equipartition Theorem 
•  Most the mass of an atom is confined to a nucleus whose 

magnitude is smaller than the whole atom. 
–  Iz is smaller than Ix and Iy. 

–  Only rotations about x and y contributes to the energy 

•  In some circumstances it is better to think of atoms 
connected to each other by a massless spring. 

•  The vibrational kinetic energy is  

•  There are seven degrees of freedom (three translational, 
two rotational, and two vibrational). è 7kT/2 per molecule 

•  While it works pretty well, the simple assumptions made for 
equi-partition principle, such as massless connecting rod, is 
not quite sufficient for detailed molecular behaviors  

1
2 m dr dt( )2
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Molar Heat Capacity 
•  The heat capacities of diatomic gases are also temperature 

dependent, indicating that the different degrees of freedom 
are “turned on” at different temperatures. 

   Example of H2 
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Classical and Quantum Statistics 
•  In gas, particles are so far apart, they do not interact 

substantially & are freeè even if they collide, they can be 
considered as elastic and do not affect the mean values 

•  If molecules, atoms, or subatomic particles are in the liquid 
or solid state, the Pauli exclusion principle* prevents two 
particles with identical quantum states from sharing the 
same space è limits available energy states in quantum 
systems 
–  Recall there is no restriction on particle energies in classical 

physics.  

•  This affects the overall distribution of energies 
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*Pauli Exclusion Principle: No two electrons in an atom may have the same set of quantum numbers  n,l,ml ,ms( ).



Classical Distributions 
•  Rewrite Maxwell speed distribution in terms of energy. 

•  Probability for finding a particle between speed v and v+dv 

•  For a monoatomic gas the energy is all translational kinetic 
energy.  

 

•  where 

E = 1
2 mv

2

Monday, Nov. 25, 2013 PHYS 3313-001, Fall 2013                      
Dr. Jaehoon Yu 

13 

F v( )dv =

dE =

dv = dE
mv

=

F E( ) = 8πC
2m3 2 exp −βE( )E1 2

4πC exp −βmv2 2( )v2dv = F E( )dE

mv dv
dE

m 2E m
=

dE
2mE



Classical Distributions 
•  Boltzmann showed that the statistical factor exp(−βE) is a 

characteristic of any classical system. 
–  regardless of how quantities other than molecular speeds may affect the energy 

of a given state 
•  Maxwell-Boltzmann factor for classical system: 

•  The energy distribution for classical system: 

•  n(E) dE: the number of particles with energies between E and E + dE 

•  g(E), the density of states, is the number of states available per 
 unit energy 

•  FMB: the relative probability that an energy state is occupied at  a given 
temperature 
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FMB = Aexp −βE( )

n E( ) = g E( )FMB



Quantum Distributions 
n  Identical particles cannot be distinguished if their wave 

functions overlap significantly 
n Characteristic of indistinguishability is what makes quantum 

statistics different from classical statistics. 

n Consider two distinguishable particles in two different 
energy states with the same probability (0.5 each) 

n The possible configurations are   

 

n Since the four states are equally likely, the probability of 
each state is one-fourth (0.25). 

E1 E2 

A, B 

A B 

B A 

A, B 
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Quantum Distributions 
n  If the two particles are indistinguishable: 

 

n  There are only three possible configurations 

n  Thus the probability of each is one-third (~0.33). 

n  Because some particles do not obey the Pauli exclusion principle, two 
kinds of quantum distributions are needed. 

n  Fermions: Particles with half-spins (1/2) that obey the Pauli principle. 
n  Examples? 

n  Bosons: Particles with zero or integer spins that do NOT obey the 
Pauli principle. 
n  Examples? 

State 1 State 2 
XX 
X X 

XX 
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Electron, proton, neutron, any atoms or molecules with 
odd number of fermions 

Photon, force mediators, pions, any atoms or molecules with even 
number of fermions 



Quantum Distributions 
•  Fermi-Dirac distribution: 

 where 

•  Bose-Einstein distribution: 

 where 

•  Bi (i = FD or BE) is the normalization factor. 

•  Both distributions reduce to the classical Maxwell-Boltzmann 
distribution when Bi exp(βE) is much greater than 1. 
–  the Maxwell-Boltzmann factor A exp(−βE) is much less than 1. 

–  In other words, the probability that a particular energy state will be 
occupied is much less than 1! 

FFD = 1
BFD exp βE( ) +1

FBE =
1

BBE exp βE( )−1
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n E( ) = g E( )FFD

n E( ) = g E( )FBE



Summary of Classical and Quantum Distributions 
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Quantum Distributions 
n The normalization constants for the 

distributions depend on the 
physical system being considered. 

n Because bosons do not obey the 
Pauli exclusion principle, more 
bosons can fill lower energy states. 

n Three graphs coincide at high 
energies – the classical limit. 

n Maxwell-Boltzmann statistics may 
be used in the classical limit. 
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Fermi-Dirac Statistics 
•  This is most useful for electrical conduction 
•  The normalization factor BFD 

–  Where EF is called the Fermi energy. 

•  The Fermi-Dirac Factor becomes 

•  When E = EF, the exponential term is 1. èFFD =1/2  

•  In the limit as T → 0, 

•  At T = 0, fermions occupy the lowest energy levels available to them 
–  Since they cannot all fill the same energy due to Pauli Exclusion principle, they 

will fill the energy states up to Fermi Energy 

•  Near T = 0, there is little a chance that the thermal agitation will kick a 
fermion to an energy greater than EF. 

FFD = 1
exp β E − EF( )⎡⎣ ⎤⎦ +1
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FFD =
1 for E < EF

0 for E > EF

⎧
⎨
⎩

BFD = exp −βEF( )



Fermi-Dirac Statistics 

n  As the temperature increases from T = 0, the Fermi-Dirac factor “smears out”, and more 
fermions jump to higher energy level above Fermi energy 

n  We can define Fermi temperature, defined as TF ≡ EF / k 

n  When T >> TF, FFD approaches a simple decaying exponential 

T > 0 
 

 

 

 

T >> TF 

 

 

 

 

T = TF 

 

 

 

 

T = 0 
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Liquid Helium 
•  Has the lowest boiling point of any element (4.2 K at 1 atmosphere 

pressure) and has no solid phase at normal pressure 

•  Helium is so light and has high speed and so escapes outside of the 
Earth atmosphere è Must be captured from underground 
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Liquid Helium 
The specific heat of liquid helium as a function of temperature 

 

• The temperature at about 2.17 K is referred to as the critical 
temperature (Tc), transition temperature, or the lambda point. 

• As the temperature is reduced from 4.2 K toward the lambda point, the 
liquid boils vigorously. At 2.17 K the boiling suddenly stops. 
• What happens at 2.17 K is a transition from the normal phase to the 
superfluid phase. 
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He Transition to Superfluid State 
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Boiling surface 

Vessel with 
very fine holes 
that do not 
allow passage 
of normal 
liquid 

Calm surface below 2.17K 

See the liquid here 

T>Tc 
T<Tc 



Liquid Helium 
•  The rate of flow increases 

dramatically as the 
temperature is reduced 
because the superfluid has a 
low viscosity.  

•  Creeping film – formed 
when the viscosity is very low 

•  But when the viscosity is 
measured through the drag 
on a metal surface, He 
behaves like a normal fluid 
è Contradiction!! 
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Liquid Helium 
n Fritz London claimed (1938) that liquid helium below the 

lambda point is a mixture of superfluid and normal fluid. 
q As the temperature approaches absolute zero, the superfluid approaches 100% 

superfluid. 
n The fraction of helium atoms in the superfluid state: 

n Superfluid liquid helium (4He) is referred to as a Bose-
Einstein condensation. 
n 4He is a boson thus it is not subject to the Pauli exclusion principle 

n all particles are in the same quantum state 
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F = 1− T
Tc
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Bose-Einstein Condensation in Gases 
•  BE condensation in liquid has been accomplished but gas condensation 

state hadn’t been until 1995 

•  The strong Coulomb interactions among gas particles made it difficult to 
obtain the low temperatures and high densities needed to produce the BE 
condensate.  

•  Finally success was achieved by E. Cornell and C. Weiman in Boulder, 
CO, with Rb (at 20nK) and W. Kettle at MIT on Sodium (at 20µK) è 
Awarded of Nobel prize in 2001  

•  The procedure 
–  Laser cool their gas of 87Rb atoms to about 1 mK.  

–  Used a magnetic trap to cool the gas to about 20 nK, driving away atoms with 
higher speeds and keeping only the low speed ones 

–  At about 170 nK, Rb gas went through a transition, resulting in very cold and dense 
state of gas 

•  Possible application of BEC is an atomic laser but it will take long time.. 
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