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PHYS 1443 – Section 004 
Lecture #16 

Thursday, Oct. 16, 2014 
Dr. Jaehoon Yu 

•  Center of Mass 
•  Center of mass of a rigid body 
•  Motion of a Group of Objects 
•  Fundamentals of Rotational Motion 
•  Rotational Kinematics 
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Announcements 
•  Mid-term comprehensive exam 

–  In class 9:30 – 10:50am, next Tuesday, Oct. 21 
–  Covers CH 1.1 through what we finish today (CH10.2) plus the 

math refresher 
–  Mixture of multiple choice and free response problems 
–  Bring your calculator but DO NOT input formula into it! 

•  Your phones or portable computers are NOT allowed as a replacement! 
–  You can prepare a one 8.5x11.5 sheet (front and back) of 

handwritten formulae and values of constants for the exam  
•  None of the parts of the solutions of any problems 
•  No derived formulae, derivations of equations or word definitions! 

–  Do NOT Miss the exam! 

PHYS 1443-004, Fall 2014                            
Dr. Jaehoon Yu 
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Center of Mass 
We’ve been solving physical problems treating objects as sizeless 
points with masses, but in realistic situations objects have shapes 
with masses distributed throughout the body.     

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point.  

Consider a massless rod with two balls attached at either end. 

CMx ≡

The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 
center of mass. 

   a

= F


∑ / M

What does above statement 
tell you concerning the 
forces being exerted on the 
system? 

m1 m2 
x1 x2 

The position of the center of mass of this system is 
the mass averaged position of the system 

xCM CM is closer to the 
heavier object 

1 1 2 2m x m x+

1 2

                  
m m+



Thursday, Oct. 16, 2014 PHYS 1443-004, Fall 2014                            
Dr. Jaehoon Yu 

4 

Motion of a Diver and the Center of Mass 

A diver performs a simple dive. 
The motion of the center of mass 
follows a parabola since it is a 
projectile motion. 

A diver performs a complicated dive. 
The motion of the center of mass still 
follows the same parabola since it 
still is a projectile motion. 

The motion of the center of mass 
of the diver is always the same.  
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Example for CM 
Thee people of roughly equivalent mass M on a lightweight (air-filled) 
banana boat sit along the x axis at positions x1=1.0m, x2=5.0m, and 
x3=6.0m.  Find the position of CM.  

Using the formula 
for CM 

∑
∑

=

i
i

i
ii

CM m

xm
x

1.0M ⋅ 12.0
3
M
M

=
                                          

=
M M M+ +

4.0( )m=5.0M+ ⋅ 6.0M+ ⋅
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Example for Center of Mass in 2-D 
A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system. 

Using the formula for CM for each 
position vector component 

∑
∑

=

i
i

i
ii

CM m

xm
x

One obtains 

CMx

  r


CM

If kgmmkgm 1;2 321 ===

   
r


CM = 3i

+ 4 j


4
= 0.75i


+ j


m1 
y=2 (0,2) 

m2 

x=1 

(1,0) 
m3 

x=2 

(2,0) 

(0.75,1) 
rCM ∑

∑
=

i
i

i
ii

CM m

ym
y

∑
∑

=

i
i

i
ii

m

xm

321

332211

mmm
xmxmxm

++
++=

321

32 2
mmm
mm
++

+=

CMy ∑
∑

=

i
i

i
ii

m

ym

321

332211

mmm
ymymym

++
++=

321

12
mmm

m
++

=

   = xCM  i


   
=

m2 + 2m3( )  i

+ 2m1 j



m1 + m2 + m3
  + yCM j
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cmxΔ =

cmv =

Velocity of the Center of Mass 

In an isolated system, the total linear momentum does not change, 
therefore the velocity of the center of mass does not change. 

1 1 2 2

1 2

m x m x
m m
Δ + Δ

+

cmx
t

Δ =
Δ

1 1 2 2

1 2

m x t m x t
m m

Δ Δ + Δ Δ =
+

1 1 2 2

1 2

m v m v
m m

+
+
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Starting from rest, two skaters push off 
against each other on ice where friction is 
negligible. One is a 54-kg woman and one 
is a 88-kg man.  The woman moves away 
with a velocity of +2.5 m/s.  Man’s velocity? 

Another Look at the Ice Skater Problem 

10 0v m s=

1 2.5fv m s= +

0cmv =

cmfv =

20 0v m s=

1 1 2 2

1 2

m v m v
m m

+ =
+

0

2 1.5fv m s= −

1 1 2 2

1 2

f fm v m v
m m

+
+

( ) ( )54 2.5 88 1.5 3 0.02 0
54 88 142

m s
⋅ + + ⋅ −

= = = ≈
+
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Center of Mass of a Rigid Object 
The formula for CM can be extended to a system of many particles 
or a Rigid Object  

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object 

CMx =
∑
∑

=

i
i

i
ii

CM m

ym
y

The position vector of the 
center of mass of a many 
particle system is  

  r


CM

M

xm
x i

ii

CM

∑Δ
≈

CMx

   
r


CM = 1
M

r


dm∫

Δmi 

ri 
rCM 

∑
∑

=

i
i

i
ii

CM m

zm
z

  = xCM i

+ yCM j


+ zCM k



   

=
mixi  i

+

i
∑ mi yi

i
∑ j


+ mizi

i
∑ k



mi
i
∑

  
r


CM =
mi r


i
i
∑

M

M

xm
i

ii

mi

∑Δ
=

→Δ 0
lim ∫= xdm

M
1

1 1 2 2 n nm x m x m x+ + ⋅⋅⋅+ i i
i
m x∑            

i
i
m∑1 2

                                      

nm m m
=

+ + ⋅ ⋅ ⋅+
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Example: CM of a thin rod 

The formula for CM of a continuous object is 

∫
=

=
=

Lx

xCM xdm
M

x
0

1

Therefore 

L 

x dx 
Δm=λdx 

Since the density of the rod (λ) is constant; 

CMx

Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length. 

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=αx 

CMxM

dxdm λ=
LM /=λ

The mass of a small segment 

∫
=

=
=

Lx

x
xdx

M 0

1 λ = 1
M

1
2
λx2⎡

⎣⎢
⎤
⎦⎥x=0

x=L

⎟
⎠
⎞⎜

⎝
⎛= 2

2
11 L

M
λ ⎟

⎠
⎞⎜

⎝
⎛= ML

M 2
11

2
L=

∫
=

=
=

Lx

x
dx

0
λ ∫

=

=
=

Lx

x
xdx

0
α

Lx

x

x
=

=
⎥⎦
⎤

⎢⎣
⎡=

0

2

2
1α 2

2
1 Lα=

∫
=

=
=

Lx

x
xdx

M 0

1 λ ∫
=

=
=

Lx

x
dxx

M 0

21 α
Lx

x

x
M

=

=
⎥⎦
⎤

⎢⎣
⎡=

0

3

3
11 α

⎟
⎠
⎞⎜

⎝
⎛= 3

3
11 L

M
α ⎟

⎠
⎞⎜

⎝
⎛= ML

M 3
21

3
2L=CMx
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The net effect of these small gravitational 
forces is equivalent to a single force acting on 
a point (Center of Gravity) with mass M. 

Center of Mass and Center of Gravity 
The center of mass of any symmetric object lies on the 
axis of symmetry and on any plane of symmetry, if  the 
object’s mass is evenly distributed throughout the body. 

Center of Gravity 

How do you think you can 
determine the CM of the 
objects that are not 
symmetric? 

  F


g

Δmi 

CM 

Axis of 
symmetry One can use gravity to locate CM. 

1.  Hang the object by one point and draw a vertical 
line following a plum-bob. 

2.  Hang the object by another point and do the same. 
3.  The point where the two lines meet is the CM.  

Δmig 

Since a rigid object can be considered as a collection 
of small masses, one can see the total gravitational 
force exerted on the object as  

What does this 
equation tell you? 

  
= Fi



i
∑

  
= Δmi g



i
∑   = M g



The CoG is the point in an object as if all the gravitational force is acting on! 
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Motion of a Group of Particles 
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass 
M is preserved, the velocity, total momentum, acceleration of the system are 

Velocity of the system 

Total Momentum 
of the system 

Acceleration of 
the system 

The external force 
acting on the system 

If net external force is 0 System’s momentum 
is conserved. 

What about the 
internal forces? 

 
vCM =

 
pCM =

 
aCM =

 

Fext∑ =

 

Fext∑ =  

ptot = const

 

drCM
dt

=
 

d
dt

1
M

mi
ri

i
∑⎛

⎝⎜
⎞
⎠⎟
=

 

1
M

mid
ri

dti
∑ =

 

mi
vi

i
∑
M

 M
vCM =

 
M

mi
vi

i
∑
M

=
 

mi
vi

i
∑ =

 

pi
i
∑ =  

ptot

 

dvCM
dt

=
 

d
dt

1
M

mi
vi

i
∑⎛

⎝⎜
⎞
⎠⎟
=

 

1
M

mi
dvi
dti

∑⎛⎝⎜
⎞
⎠⎟
=

 

mi
ai

i
∑
M

 M
a =

 
mi

i
∑⎛⎝⎜

⎞
⎠⎟
a =

 

dptot
dt

0 =
 

dptot
dt
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In the simplest kind of rotation, points on a 
rigid object move on circular paths around an 
axis of rotation. 

Rotational Motion and Angular Displacement 

The angle swept out by 
the line passing through 
any point on the body and 
intersecting the axis of  
rotation perpendicularly is 
c a l l e d t h e a n g u l a r 
displacement. 

θΔ =θ oθ−
It’s a vector!!  So there must be a direction… 

How do we define directions? +:if counter-clockwise 
-:if clockwise 

The direction vector points gets determined based on the right-hand rule. These are just conventions!! 



 (in radians)θ =

For one full revolution: 

2  radπ = θ =

SI Unit of the Angular Displacement 
Arc length

Radius
= s
r

Since the circumference of a circle is  2πr 

360o2 r
r
π =2  radπ

Dimension? None 

One radian is an angle subtended 
by an arc of the same length as the 
radius!   
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Unit of the Angular Displacement 

1 radian is 1 rad= 360

2πrad
⋅1rad = 180



π
57.3≅ o≅ 180



3.14

And one 
degrees is 1o

2 1
360
π= ⋅ o
o 1

180
π= ⋅ o

o 0.0175rad≅
3.14 1
180

≅ ⋅ o
o

How many degrees are in one radian? 

How radians is one degree? 

How many radians are in 10.5 revolutions? 

10.5rev =

Very important: In solving angular problems, all units, degrees or revolutions, must be converted to radians. 

10.5 2 radrev
rev

π⋅ = ( )21 radπ
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Example 
A particular bird’s eyes can just distinguish objects that subtend an angle no 
smaller than about 3x10-4 rad.  (a) How many degrees is this?  (b) How small 
an object can the bird just distinguish when flying at a height of 100m?  

(a) One radian is 360o/2π. Thus 
43 10 rad−×

l =

( )43 10 rad−= × ×

( )360 2 radπo 0.017= o

(b) Since l=rθ and for small angle 
arc length is approximately the 
same as the chord length. 

rθ =
4100 3 10m rad−× × =

23 10 3m cm−× =
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Synchronous satellites are put into an orbit 
whose radius is 4.23×107m. If the angular 
separation of the two satellites is 2.00 degrees, 
find the arc length that separates them. 

Ex. Adjacent Synchronous Satellites 

2.00deg

s =

 (in radians)θ = Arc length
Radius

= s
r

Convert 
degrees to 

radians 

2  rad
360deg
π⎛ ⎞

=⎜ ⎟
⎝ ⎠

0.0349 rad

rθ = ( )( )74.23 10 m 0.0349 rad×
61.48 10 m  (920 miles)= ×

What do we need to find out? The Arc length!!! 
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The diameter of the sun is about 400 times greater than that of the 
moon.  By coincidence, the sun is also about 400 times farther from the 
earth than is the moon. For an observer on the earth, compare the angle 
subtended by the moon to the angle subtended by the sun and explain 
why this result leads to a total solar eclipse. 

Ex.  A Total Eclipse of the Sun 

 (in radians)θ =
Arc length

Radius
= s
r

I can even cover the entire 
sun with my thumb!!  Why? 

Because the distance (r) from my eyes to my 
thumb is far shorter than that to the sun. 
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Angular displacement is defined as  

=Δθ

Angular Displacement, Velocity, and Acceleration 

How about the average angular velocity, the 
rate of change of angular displacement? ≡ω

By the same token, the average angular 
acceleration, rate of change of the 
angular velocity, is defined as… ≡α

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration. 

θi	


θf	


if θθ −
=

−
−

if

if

tt
θθ

tΔ
Δθ

=
−
−

if

if

tt
ωω

tΔ
Δω

Unit? rad/s 

Unit? rad/s2 

Dimension? [T-1] 

Dimension? [T-2] 
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Problem Solving Strategy 
•  Visualize the problem by drawing a picture. 
•  Write down the values that are given for any of the 

five kinematic variables and convert them to SI units. 
–  Remember that the unit of the angle must be radians!! 

•  Verify that the information contains values for at least 
three of the five kinematic variables.  Select the 
appropriate equation. 

•  When the motion is divided into segments, remember 
that the final angular velocity of one segment is the 
initial velocity  for the next. 

•  Keep in mind that there may be two possible answers 
to a kinematics problem. 
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Ex. Rotational Kinematics 
A wheel rotates with a constant angular acceleration of 3.50 rad/s2.  
If the angular speed of the wheel is 2.00 rad/s at ti=0, a) through 
what angle does the wheel rotate in 2.00s? 

if θθ −

Using the angular displacement formula in the previous slide, one gets 

tω=

( )200.250.3
2
100.200.2 ×+×= rad0.11=

.75.1.
2
0.11 revrev ==
π

21
2
tα+
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Example for Rotational Kinematics cnt’d 
What is the angular speed at t=2.00s? 

tif αωω +=
Using the angular speed and acceleration relationship 

Find the angle through which the wheel rotates between t=2.00s and 
t=3.00s. 

2tθ = =

srad /00.900.250.300.2 =×+=

3tθ = =

θΔ 2θθ −= 3 rad8.10= .72.1.
2
8.10 revrev ==
π

if θθ − 2

2
1 tt αω +=Using the angular kinematic formula 

At t=2.00s 

At t=3.00s 

Angular 
displacement 

2.00 2.00× 1 3.50 2.00
2

+ × 11.0rad=

2.00 3.00× ( )21 3.50 3.00
2

+ × 21.8rad=
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Relationship Between Angular and Linear Quantities 
What do we know about a rigid object that rotates 

about a fixed axis of rotation? 

When a point rotates, it has both the linear and angular  
components in its motion.   
What is the linear component of the motion you see? 

v

Every particle (or masslet) in the object moves in a 
circle centered at the same axis of rotation. 

Linear velocity along the tangential direction. 
How do we related this linear component of the motion 
with angular component? 

l rθ=The arc-length is  So the tangential speed v is 

What does this relationship tell you 
about the tangential speed of the points 
in the object and their angular speed?: 

Although every particle in the object has the same 
angular speed, its tangential speed differs and is 
proportional to its distance from the axis of rotation. 
The farther away the particle is from the center of 
rotation, the higher the tangential speed. 

The direction 
of ω follows 
t h e r i g h t -
hand rule. 

dl
dt

= ( )d r
dt

θ= dr
dt
θ= ωr=
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Is the lion faster than the horse? 
A rotating carousel has one child sitting on a horse near the outer edge and 
another child on a lion halfway out from the center. (a) Which child has the 
greater linear speed? (b) Which child has the greater angular speed? 

(a)  Linear speed is the distance traveled 
divided by the time interval.  So the child 
sitting at the outer edge travels more 
distance within the given time than the child 
sitting closer to the center.  Thus, the horse 
is faster than the lion. 

(b) Angular speed is the angle traveled divided by the time interval.  The 
angle both the children travel in the given time interval is the same.  
Thus, both the horse and the lion have the same angular speed. 
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How about the acceleration? 

v =

Two 
How many different linear acceleration components do 
you see in a circular motion and what are they? 

Total linear acceleration is 

Since the tangential speed v is 

What does this 
relationship tell you? 

Although every particle in the object has the same angular 
acceleration, its tangential acceleration differs proportional 
to its distance from the axis of rotation. 

Tangential, at, and the radial acceleration, ar. 

taThe magnitude of tangential 
acceleration at is 

The radial or centripetal acceleration ar is ra
What does 
this tell you? 

The father away the particle is from the rotation axis, the more radial 
acceleration it receives.  In other words, it receives more centripetal force. 

a

dv
dt

= ( )d r
dt

ω= dr
dt
ω= αr=

r
v2= ( )

r
r 2ω=

2ωr=

22
rt aa += ( ) ( )222 ωα rr += 42 ωα += r

rω
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Example 
(a) What is the linear speed of a child seated 1.2m from the center of a 
steadily rotating merry-go-around that makes one complete revolution 
in 4.0s? (b) What is her total linear acceleration? 

First, figure out what the angular 
speed of the merry-go-around is. 

v

ϖ =
Using the formula for linear speed 

Since the angular speed is constant, there is no angular acceleration. 

Tangential acceleration is ta
Radial acceleration is ra
Thus the total 
acceleration is a

rω= 1.2 1.6 / 1.9 /m rad s m s= × =

rα= 2 21.2 0 / 0 /m rad s m s= × =
2rϖ= ( )2 21.2 1.6 / 3.1 /m rad s m s= × =

2 2
t ra a= + ( )2 20 3.1 3.1 /m s= + =

1
4.0
rev
s
= 2π 1.6 /rad s           

4.0s
=
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Example for Rotational Motion 
Audio information on compact discs are transmitted digitally through the readout system 
consisting of laser and lenses.   The digital information on the disc are stored by the pits 
and flat areas on the track.   Since the speed of readout system is constant, it reads out 
the same number of pits and flats in the same time interval.  In other words, the linear 
speed is the same no matter which track is played.  a) Assuming the linear speed is 1.3 
m/s, find the angular speed of the disc in revolutions per minute when the inner most 
(r=23mm) and outer most tracks (r=58mm) are read. 

Using the relationship between angular and tangential speed 

r
v=ω srad

mm
sm /5.56

1023
3.1

23
/3.1

3 =×
== −

9.00 /rev s=

srad
mm
sm /4.22

1058
3.1

58
/3.1

3 =×
== −ω

min/101.2 2 rev×=

v rω=

mmr 58=

mmr 23=

25.4 10 /minrev= ×
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b) The maximum playing time of a standard music CD is 74 minutes and 
33 seconds.  How many revolutions does the disk make during that time? 

c) What is the total length of the track past through the readout mechanism? 

ω

l
d) What is the angular acceleration of the CD over the 4473s time interval, 
assuming constant a? 

α

( )
2

fi ωω +
=

( ) min/375
2

min/210540 revrev =+=

fθ ti  ωθ += revssrev 4108.24473/
60
3750 ×=×+=

tvtΔ= 31.3 / 4473 5.8 10m s s m= × = ×

( )
t

if

Δ
−

=
ωω ( ) 3 222.4 56.5 /

7.6 10 /
4473

rad s
rad s

s
−−

= = ×


