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PHYS 3446 – Lecture #6
Wednesday, Sept 21, 2016

Dr. Jae Yu

1. Relativistic Treatment
2. Feynman Diagram
3. Nuclear Phenomenology
4. Properties of Nuclei

• Labeling
• Masses
• Sizes
• Nuclear Spin and Dipole Moment
• Stability and Instability of Nuclei
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Announcement
• Faculty expo #3

– 4pm today in SH100
• Reading assignment

– Read and follow through Appendix A, special 
relativity
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Reminder: Homework Assignment #3
1. Derive Eq. 1.55 starting from 1.48 and 1.49 (5 points)
2. Derive the formulae for the available CMS energy (           

) for
• Fixed target experiment with masses m1 and m2 with 

incoming energy E1. (5points)
• Collider experiment with masses m1 and m2 with incoming 

energies E1 and E2. (5points)
3. End of chapter problem 1.7 ( 5points)
• These assignments are due next Monday, Sept. 26
• Reading assignment: Section 1.7 

s
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Some Quantities in Special Relativity
• Fractional velocity: 

• Lorentz g factor

• Relative momentum and the total energy of the 
particle moving at a velocity                is

• Square of the four momentum P=(E,pc), rest mass 
energy
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Relativistic Variables
• Velocity of CM in the scattering of two particles 

with rest mass m1 and m2 is: 

• If m1 is the mass of the projectile and m2 is that of 
the target, for a fixed target we obtain
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Relativistic Variables
• At very low energies where m1c2>>P1c, the velocity 

reduces to:

• At very high energies where m1c2<<P1c and 
m2c2<<P1c , the velocity can be written as:

Expansion
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Relativistic Variables
• For high energies, if m1~m2,

•

• gCM becomes:
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Relativistic Variables
• In general, we can rewrite

• Thus the generalized notation of gCM becomes
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Relativistic Variables
• The invariant scalar, s, is defined as:

• So what is this the CMS frame?

• Thus,         represents the total available energy in 
the CMS
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Useful Invariant Scalar Variables
• Another invariant scalar, t, the four momentum transfer 

(differences in four momenta), is useful for scattering:

• Since momentum and total energy are conserved in all 
collisions, t can be expressed in terms of target variables

• In CMS frame for an elastic scattering, where Pi
CM=Pf
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=PCM and Ei
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Feynman Diagram
• The variable t is always negative for an elastic scattering
• The variable t could be viewed as the square of the invariant 

mass of a particle with                   and                   exchanged 
in the scattering

• While the virtual particle cannot be detected in the scattering, 
the consequence of its exchange can be calculated and 
observed!!!
– A virtual particle is a particle whose mass is different than the rest 

mass

Time

t-channel 
diagram
Momentum of the carrier is 
the momentum difference 
between the two particles.
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Useful Invariant Scalar Variables
• For convenience we define a variable q2,
• In the lab frame,               , thus we obtain:

• In the non-relativistic limit:

• q2 represents “hardness of the collision”. Small qCM
corresponds to small q2.
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Relativistic Scattering Angles in Lab and CMS 
• For a relativistic scattering, the relationship between the 

scattering angles in Lab and CMS is:

• For Rutherford scattering (m=m1<<m2, v~v0<<c):

• Divergence at q2~0, a characteristics of a Coulomb field

Resulting in a 
cross section
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Nuclear Phenomenology
• Rutherford scattering experiment clearly demonstrated the 

existence of a positively charged central core in an atom
• The formula deviated for high energy a particles (E>25MeV), 

especially for low Z nuclei.
• 1920’s James Chadwick noticed serious discrepancies 

between Coulomb scattering expectation and the observed 
elastic scattering of a particle on He.

• None of the known effects, including quantum effect, 
described the discrepancy.

• Clear indication of something more than Coulomb force 
involved in the interactions.

• Before Chadwick’s discovery of neutron in 1932, people 
thought nucleus contain protons and electrons. è We now 
know that there are protons and neutrons (nucleons) in nuclei.
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• The nucleus of an atom X can be labeled uniquely by its:
– Electrical Charge or atomic number Z (number of protons).
– Total number of nucleons A (=Np+Nn)

• Isotopes: Nuclei with the same Z but different A
– Same number of protons but different number of neutrons
– Have similar chemical properties

• Isobars: Nuclei with same A but different Z
– Same number of nucleons but different number of protons

• Isomers or resonances of the ground state: Excited 
nucleus to a higher energy level

• Mirror nuclei: Nuclei with the same A but with switched 
Np and Nn

Properties of Nuclei: Labeling 

A ZX
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• A nucleus of           has Np=Z and Nn=A-Z
• Naively one would expect

• Where mp~938.27MeV/c2 and mn=939.56MeV/c2

• However measured mass turns out to be

• This is one of the explanations for nucleus not falling apart 
into its nucleon constituents

Nuclear Properties: Masses of Nuclei
A ZX

( ),M A Z =

( ) ( ), p nM A Z Zm A Z m< + -

( )p nZm A Z m+ -
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• The mass deficit

• Is always negative and is proportional to the nuclear 
binding energy

• How are the BE and mass deficit related? 

• What is the physical meaning of BE?
– A minimum energy required to release all nucleons from a 

nucleus 
– So B= -BE is the energy required to keep a nucleus

Nuclear Properties: Binding Energy

( ),M A ZD =

( ) 2. ,B E M A Z c= D

( ),M A Z ( )p nZm A Z m- - -



TWednesday, Sept. 21, 2016 PHYS 3446, Fall 2016 18

• BE per nucleon is

Nuclear Properties: Binding Energy

B BE
A A

-
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A

-D
=

( ) ( )( ) 2,p nZm A Z m M A Z c

A

+ - -
=

• Rapidly increase with A till A~60 
at which point B/A~9MeV.

• A>60, the B/A gradually 
decrease è For most the large 
A nucleus, B/A~8MeV.

9MeV
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• de Broglie’s wavelength:
– Where      is the Planck’s constant
– And is the reduced wave length

• Assuming 8MeV was given to a nucleon (m~940MeV), 
the wavelength is

• Makes sense for nucleons to be inside a nucleus since 
the size is small.

• If it were electron with 8MeV, the wavelength is ~10fm, 
a whole lot larger than a nucleus.

Nuclear Properties: Binding Energy
! = "
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• At relativistic energies, the magnetic moment of electron 
also contributes to the scattering
– Neville Mott formulated Rutherford scattering in QM and 

included the spin effects
– R. Hofstadter, et al., discovered the effect of spin, nature of 

nuclear (& proton) form factor in late 1950s  
• Mott scattering x-sec (scattering of a point particle) is 

related to Rutherford x-sec:

• Deviation from the distribution expected for point-
scattering provides a measure of size (structure)

Nuclear Properties: Sizes

Mott

d
d
sæ ö

ç ÷Wè ø
= 24cos

2 Rutherford

d
d

q sæ ö
ç ÷Wè ø



TWednesday, Sept. 21, 2016 PHYS 3446, Fall 2016 21

• Another way is to use the strong nuclear force of 
sufficiently energetic strongly interacting particles (p
mesons, protons, etc)
– What is the advantage of using these particles?

• If the energy is high, Coulomb interaction can be neglected
• These particles readily interact with nuclei, getting “absorbed” into 

the nucleus
• Thus, probe strong interactions directly

– These interactions can be treated the same way as the light 
absorptions resulting in diffraction, similar to that of light 
passing through gratings or slits

Nuclear Properties: Sizes
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• The size of a nucleus can be inferred from the 
diffraction pattern

• All these phenomenological investigation provided 
the simple formula for the radius of the nucleus to its 
number of nucleons or atomic number, A: 

Nuclear Properties: Sizes

1 3
0R r A= »

How would you interpret this formula?

13 1 31.2 10 A cm-´ = 1 31.2 fmA
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• Both protons and neutrons are fermions with spins
• Nucleons inside a nucleus can have orbital angular 

momentum
• In Quantum Mechanics orbital angular momenta are integers
• Thus the total angular momentum of a nucleus is

– Integers: if even number of nucleons in the nucleus
– Half integers: if odd number of nucleons in the nucleus

• Interesting facts are
– All nucleus with even number of p and n are spin 0.
– Large nuclei have very small spins in their ground state

• Hypothesis: Nucleon spins in the nucleus are very strongly 
paired to minimize their overall effect

Nuclear Properties: Spins
1 2


