PHYS 3446 – Lecture #13

Monday, Oct. 17, 2016 Dr. Jae Yu

- Energy Deposition in Media
 - Bremstraarhlung Process
 - Photon Energy Loss
 - Neutron Interactions
 - Hadron Interactions

Announcement

- First term exam results
 - Class average: 40.1/97
 - Equivalent to 41.3/100
 - Top score: 68/97
- Evaluation Policy Reminder:
 - Two Term Exams: 15 % each → 30%
 - Lab Score: 15%
 - Final Semester project paper: 20%
 - 5+2 minute Project oral presentation: 10%
 - Homework: 15%
 - Quizzes: 10%
 - Extra Credit: 10%

Homework #6

- Perform the detailed calculations in examples 1 – 7 in CH6
- Due for these homework problems is next Monday, Oct. 24.

Straggling, Multiple Scattering and Statistical process

- Phenomenological calculations can describe average behavior but large fluctuations are observed in an eventby-event bases
 - This is due to the statistical nature of the scattering process
 - Finite dispersion of energy deposit or scattering angular distributions is measured
- Statistical effect of angular deviation experienced in Rutherford scattering off atomic electrons in the medium
 - Consecutive collisions add up in a random fashion and provide net deflection of any incident particles from its original path
 - Called "Multiple Coulomb Scattering" → Increases as a function of path length

$$\theta_{rms} \approx \frac{20 MeV}{\beta pc} z \sqrt{\frac{L}{X_0}}$$

• z: charge of the incident particle, L: material thickness, X₀: the radiation length of the medium

Ex: Multiple Scattering Angles

- Compare the multiple scattering angles of 5MeV proton to 5MeV electron through 1cm of Ar gas whose radiation length is 105m at atmospheric pressure and 0°C.
- For proton which is non-relativistic

$$p_{p} = \sqrt{2M_{p}T_{p}} = \sqrt{2 \cdot 1000 \, MeV/c^{2} \cdot 5MeV} \approx 100 \, MeV/c$$

$$v_{p} = \sqrt{2T_{p}/M_{p}} = \sqrt{2 \cdot 5MeV/1000 \, MeV/c^{2}} \approx 0.1c$$

$$\theta_{rms} \approx \frac{20MeV}{\beta pc} z \sqrt{\frac{L}{X_{0}}} = \frac{20}{0.1 \cdot 100} \cdot 1 \cdot \sqrt{\frac{0.01}{105}} \approx 0.02 \, rad \approx 20 \, mrad$$

For the electron which is relativistic

$$p_{e} = \frac{E}{c} = \frac{T + m_{e}c^{2}}{c} \approx 5.5 \, MeV/c \qquad \beta \sim 1$$

$$\theta_{rms} \approx \frac{20 MeV}{\beta pc} z \sqrt{\frac{L}{X_{0}}} = \frac{20}{1 \cdot 5.5} \cdot 1 \cdot \sqrt{\frac{0.01}{105}} \approx 0.04 \, rad \approx 40 \, mrad$$

Energy Loss Through Bremsstrahlung

- Energy loss of incident electrons
 - Bethe-Bloch formula works well (up to above 1MeV for electrons)
 - But due to the small mass, electron's energy loss gets complicated
 - Relativistic corrections take large effect even down to a few keV level
 - Electron projectiles can transfer large fractions of energies to the atomic electrons they collide
 - Produce δ-rays or knock-on electrons → Which have the same properties as the incident electrons
 - Electrons suffer a large acceleration as a result of the interaction with electric field by nucleus. What do these do?
 - Causes electrons to radiate or emit photons
 - Bremsstrahlung → An important mechanism of relativistic electron energy loss

^{*} Bremsstrahlung: Braking Radiation or Decelerating Radiation

A 3D depiction of a delta ray

Nuclear Emulsion Photos

6, Fall 2016

Total Electron Energy Loss

The total electron energy loss in matter can be written as

$$\left(-\frac{dT}{dx}\right)_{tot} = \left(-\frac{dT}{dx}\right)_{ion} + \left(-\frac{dT}{dx}\right)_{brem}$$

Relative magnitude between Bremsstrahlung and ionization is

$$\left(-\frac{dT}{dx}\right)_{brem} / \left(-\frac{dT}{dx}\right)_{ion} \approx \frac{TZ}{1200m_e c^2}$$

- Z: Atomic number of the medium, m_e: rest mass of the electron, T: Kinetic energy of the electron in MeV
- At high energies, the ionization loss is constant
 - Radiation is the dominant energy loss mechanism
 - The energy loss is directly proportional to the incident kinetic energy

Total Electron Energy Loss

• Above the critical energy (T_c) the brem process

dominates

$$\left(\frac{dT}{dx}\right)_{brem} = \left(\frac{dT}{dx}\right)_{ion} = -\frac{T_c}{X_0}$$

Photon Energy Loss

- Photons are electrically neutral
 - They do not feel the Coulomb force
 - They cannot directly ionize atoms
- Photons are EM force carriers
 - Can interact with matter and result in ionization
 - What are the possible processes?
 - Photo-electric effect
 - Compton scattering
 - Pair production

Light Attenuation

- Reduction of intensity in a medium
- Can be described by the effective absorption coefficient μ
 - $-\mu$ reflects the total cross section for the interaction
 - $-\mu$ depends on energy or frequency of the incident light
- The intensity of light at any given point through the medium, x, is given as $I(x) = I_0 e^{-\mu x}$
- Half thickness, the thickness of material for photon's intensity to be half the initial intensity: $\chi_{1/2} = \frac{\ln 2}{2} = \frac{0.693}{2}$
- μ^{-1} is the mean free path for absorption

Photo-electric Effect

- Low energy photon is absorbed by a bound electron in an atom
 - The electron is subsequently emitted with T_e
 - The energy of electron T_e is $T_e = h\nu I_B$
 - I_B: Energy needed to free the given atomic electron
 - v: Frequency of the incident photon

Photo-electric Effect

- The energy $I_{\mathcal{B}}$ sets the threshold photon energies for this process to take place
- Photo-electric effect cross section is large in the range of X-ray energies (keV)

Photo-electric Effect X-sec

Photo-electric Effect

- The energy $I_{\mathcal{B}}$ sets the threshold photon energies for this process to take place
- Photo-electric effect cross section is large in the range of X-ray energies (keV)
- The scale of cross section is

$$\sigma \approx \frac{Z^5}{\left(hv\right)^{7/2}}$$
 for $E_{\gamma} < m_e c^2$ and $\sigma \approx \frac{Z^5}{hv}$ for $E_{\gamma} > m_e c^2$
• What do you conclude from these?

- - This process is particularly important for high Z medium
 - Not very significant above 1MeV photon energies
- When an inner layer electron is emitted, photons from transition accompany the electron

Photo-electric Effect X-sec

Compton Scattering

- Equivalent to photo-electric effect on a free electron
 - Like a collision between a photon with energy E=h√ and momentum p=E/c on a stationary electron
 - Electron absorbs a photon
 - Forms an electron like system with excited state and with an unphysical mass (virtual system)
 - Emits a photon with different frequency as it de-excites into a physical electron

Compton Scattering

- The kinematics of the scattering assumes the free electron
- Thus the results will not work for low energy (<100keV) incident photons where the effect of atomic binding can be important
- The emitted photon frequency of scattering angle θ is

$$v' = \frac{v}{1 + \frac{hv}{m_e c^2} (1 - \cos \theta)}$$

- For finite scattering angle (θ) , the energy of the scattered photon is smaller than that of the incident one
- Some incident photon energy is transferred to the electron, having recoil energy dependent on the scattering angle
- This was a piece of evidence for particle property of light

Pair Production

- When a photon has sufficient energy, it can be absorbed in matter and produces a pair of oppositely charged particles
 - Should not violate any conservation laws, including quantum number conservations
 - Most common one is the conversion to an electron and positron pair
- Massless photons cannot produce a pair of massive particles without violating energy-momentum conservation
 - In photon's rest frame, the initial state energy is 0.
 - While final state energy is non-zero.
- Thus the pair production can only occur in a medium
 - Why?
 - A recoiling nucleus can absorb any momentum required to assure energymomentum conservation

Pair Production

- What is the minimum energy needed to produce an electron-positron pair?
 - Twice the rest mass energy of the electron $hv \approx 2m_e c^2 = 2 \times 0.511 MeV = 1.022 MeV$
- The pair production cross section is proportional to Z²
 - Z: atomic number of the medium
 - Rises rapidly and dominates all energy-loss mechanisms for photon energies above <u>10MeV</u> or so.
 - It saturates and can be characterized by a constant mean free path for the conversion
 - A constant absorption coefficient \rightarrow Electron radiation length of medium $X_{pair} = \left(\mu_{pair}\right)^{-1} \approx \frac{9}{7} X_0$

× T

Pair Production

- What happens to the positron created in the conversion?
 - Positron is the anti-particle of the electron
 - Behaves exactly like electrons as they traverse through the matter
 - Deposits energy through ionization or Bremsstrahlung
 - When it loses most of its kinetic energy, it captures an electron to form a hydrogen like atom, a positronium.
 - Positronium is unstable and decays (annihilate) in a life time of 10⁻¹⁰ s

•
$$e^+ + e^- \rightarrow \gamma + \gamma$$

- Why two photons?
 - To conserve the angular momentum
- To conserve energy-momentum, the photon energies are exactly 0.511 MeV each
 - Good way to detect positronium

