PHYS 3446 – Lecture #17

Monday, Oct. 31, 2016 Dr. **Jae** Yu

- Particle Detection
 - Semi-Conductor Detectors
 - Calorimeters
- Particle Accelerators
 - Electro-static Accelerators
 - Cyclotron Accelerators
 - Synchrotron Accelerators

Announcements

- Quiz #2 result
 - Class average: 28.6/66
 - Equivalent to: 43.3/100
 - Previous result: 47.1/100
 - Top score: 65/66
- Mark on your calendar two special colloquia double extra credit:
 - Nov. 30: Dr. Steven Sand
 - Dec. 7: Dr. K.C.Kong

Homework #8

- Carry out Fourier transformation and derive equations 9.3 and 9.5
- Due for these assignments is Monday, Nov. 7

Semiconductor Detectors

- Semiconductors can produce large signal (electron-hole pairs) for a relatively small energy deposit (~3eV)
 - Advantageous in measuring low energy at high resolution
- Silicon strip and pixel detectors are widely used for high precision position measurements
 - Due to large electron-hole pair production, thin layers (200 300 $\mu m)$ of wafers are sufficient for measurements
 - Output signal proportional to the ionization loss in the semiconductor
 - Low bias voltages sufficient to operate
 - Can be deposit in thin stripes (20 50 $\mu\text{m})$ on a thin electrode
 - High position resolution achievable
 - Can be used to distinguish particles in multiple detector configurations
- So what is the catch?
 - Very expensive \rightarrow On the order of \$30k/m²

DØ Silicon Vertex Detector

	Barrels	F-Disks	H-Disks
Channels	387120	258048	147456
Modules	432	144	96
Inner R	2.7 cm	2.6 cm	9.5 cm
Outer R	9.4 cm	10.5 cm	26 cm

PHYS 3446, Fall 2016

Calorimeters

- Magnetic measurement of momentum is not sufficient for physics, why?
 - The precision for angular measurements gets worse as particles' momenta increases
 - Increasing the magnetic field or increasing the precision of the tracking device will help but will be expensive
 - Cannot measure neutral particle momenta
- How do we solve this problem?
 - Use a device that measures kinetic energies of the particle
- Calorimeter
 - A device that absorbs the full kinetic energy of the particle
 - Provides signal proportional to deposited energy

Calorimeters

- Large scale calorimeter were developed during 1960s
 - For energetic cosmic rays
 - For particles produced in accelerator experiments
- How do high energy EM (photons and electrons) and Hadronic particles deposit their energies?
 - Electrons: via bremsstrahlung
 - Photons: via electron-positron conversion, followed by bremsstrahlung of electrons and positrons
 - These processes continue occurring in the secondary particles causing an electromagnetic shower losing all of its energy

Electron Shower Process

Calorimeters

- Hadrons are massive thus their energy deposit via brem is small
- They lose their energies through multiple nuclear collisions
- An incident hadron produces multiple pions and other secondary hadrons in the first collision with a nucleus
- The secondary hadrons then successively undergo nuclear collisions
- Mean free path for nuclear collisions is called <u>nuclear interaction</u> <u>lengths</u> or nuclear absorption length (λ_0^{abs}) and is substantially longer than that of EM particles, radiation length (X₀)
- Hadronic shower processes are therefore more erratic than EM shower processes

Sampling Calorimeters

- High energy particles require large calorimeters to absorb all of their energies and measure them fully in the device (called total absorption calorimeters)
- The number of shower particles is directly proportional to the energy of the incident particles
- One can deduce the total energy of the particle by measuring only the fraction of their energy, as long as the fraction is known → Called sampling calorimeters
 - Most the high energy experiments use sampling calorimeters

ATLAS LAr EM Calorimeter

real device

radiator material

electrodes

How particle showers look in a detector

Monday, Oct. 31, 2016

A fresh new event at the ATLAS

$H \rightarrow WW^* \rightarrow e\nu\mu\nu$ candidate and two jets with VBF topology

Longitudinal view

Projected η - ϕ view

Principles of Calorimeters

Total absorption calorimeter: Sees the entire shower energy, all active volume!

Sampling calorimeter: Sees only some fraction of the shower energy

For EM
$$E_{vis} = fE_{in} = \frac{X_0^{vis}}{X_0^{vis} + X_0^{abs}}E_{in}$$

14

Example Hadronic Shower (20GeV)

Monday, Oct. 31, 2016

