PHYS 3446 – Lecture #20

Monday, Nov. 14, 2016 Dr. **Jaehoon Yu**

- Elementary Particle Properties
 - Elementary particles
 - Quantum Numbers
 - Gell-Mann-Nishijima Relations
 - Production and Decay of Resonances
- Symmetries
 - Why do we care about the symmetry?
 - Symmetry in Lagrangian formalism
 - Symmetries in quantum mechanical system

Announcements

Reading assignments: 10.3 and 10.4

Elementary Particles

 Before the quark concepts, all known elementary particles were grouped in four depending on the nature of their interactions

Particle	Symbol	Range of Mass Values
Photon	γ	$\lesssim 2 imes 10^{-16} \ { m eV}/c^2$
Leptons	$e^-,\mu^-, au^-, u_e, u_\mu, u_ au$	$\lesssim 3~{ m eV}/c^2 - 1.777~{ m GeV}/c^2$
Mesons	$\pi^+, \pi^-, \pi^0, K^+, K^-, K^0,$	
	$ ho^+, ho^-, ho^0,\ldots$	$135 \text{ MeV}/c^2$ – few GeV/c^2
Baryons	$p, n, \Lambda^0, \Sigma^+, \Sigma^-, \Sigma^0, \Delta^{++},$	
	$\Delta^0, N^{*0}, Y_1^{*+}, \Omega^-, \dots$	938 MeV/ c^2 – few GeV/ c^2

Elementary Particles

- How do these particles interact??
 - All particles, including photons and neutrinos, participate in gravitational interactions
 - Photons can interact electromagnetically with any particles with electric charge
 - All charged leptons participate in both EM and weak interactions
 - Neutral leptons do not have EM couplings
 - All hadrons (Mesons and baryons) responds to the strong force and appears to participate in all the interactions

Elementary Particles: Bosons and Fermions

- All particles can be classified as bosons or fermions
 - Bosons follow Bose-Einstein statistics
 - Quantum mechanical wave function is symmetric under exchange of any pair of bosons
 - $\Psi_B(x_1, x_2, x_3, \dots, x_i, \dots, x_n) = \Psi_B(x_2, x_1, x_3, \dots, x_i, \dots, x_n)$
 - x_i: spàce-time coordinates and internal quantum numbers of particle i
 - Fermions obey Fermi-Dirac statistics
 - Quantum mechanical wave function is anti-symmetric under exchange of any pair of Fermions

$$\Psi_{F}(x_{1}, x_{2}, x_{3}, \dots, x_{i}, \dots, x_{n}) = -\Psi_{F}(x_{2}, x_{1}, x_{3}, \dots, x_{i}, \dots, x_{n})$$

• Pauli exclusion principle is built into the wave function

- For
$$\mathbf{x}_i = \mathbf{x}_j$$
, $\Psi_F = -\Psi_F$

Monday, Nov. 14, 2016

Bosons, Fermions, Particles and Antiparticles

- Bosons
 - All have integer spin angular momentum
 - All mesons are bosons
- Fermions
 - All have half integer spin angular momentum
 - All leptons and baryons are fermions
- All particles have anti-particles
 - What are anti-particles?
 - Particles that have the same masses as particles but with opposite charges and quantum numbers
 - What is the anti-particle of
 - $A \pi^0$? π^0
 - A neutron? \overline{n}
 - A K⁰? \overline{K}^0
 - A Neutrinos? $\overline{\nu}$

Quantum Numbers

- When can an interaction occur?
 - If it is kinematically allowed
 - If it does not violate any recognized conservation laws
 - Eg. A reaction that violates charge conservation will not occur
 - In order to deduce conservation laws, a full theoretical understanding of forces are necessary
- Since we do not have a full theory for all the forces
 - Many of general conservation rules for particles are based on experimental observations
- One of the clearest conservation rule is the lepton number conservation
 - While photon and meson numbers are not conserved

Baryon Numbers

- Can the decay $p \rightarrow e^+ + \pi^0$ occur?
 - Kinematically??
 - Yes, proton mass is a lot larger than the sum of the two final state masses
 - Electrical charge?
 - Yes, it is conserved
- But this decay does not occur (<10⁻⁴⁰/sec)
 - Why?
 - Must be a conservation law that prohibits this decay
 - What could it be?
 - An additive and conserved quantum number, the Baryon number (B)
 - All baryons (particles with 3 more quark compositions) have B=1
 - Anti-baryons? (B=-1)
 - Photons, leptons and mesons have B=0
- Since proton is the lightest baryon, it does not decay.

Lepton Numbers

- Quantum number of leptons
 - All leptons carry $\mathcal{L}=1$ (particles) or $\mathcal{L}=-1$ (antiparticles)
 - Photons or hadrons carry $\mathcal{L}=0$
- Lepton number is a conserved quantity
 - Total lepton number must be conserved
 - Lepton numbers by species must also be conserved
 - This is an empirical law necessitated by experimental observations (or lack thereof)
- Consider the decay $e^- + e^- \rightarrow \pi^- + \pi^-$
 - Does this decay process conserve energy and charge?
 - Yes
 - But it hasn't been observed, why?
 - Due to the lepton number conservation law

Lepton Number Assignments

Leptons (anti-leptons)	\mathcal{L}_{e}	\mathcal{L}_{μ}	$\mathcal{L}_{ au}$	$\mathcal{L} = \mathcal{L}_e + \mathcal{L}_\mu + \mathcal{L}_t$
e⁻ (e⁺)	1 (-1)	0	0	1 (-1)
$v_e \ \left(\overline{v}_e\right)$	1 (-1)	0	0	1 (-1)
$\mu^{-}\left(\mu^{+}\right)$	0	1 (-1)	0	1 (-1)
$\nu_{\mu} \left(\overline{ u}_{\mu} ight)$	0	1 (-1)	0	1 (-1)
$ au^-\left(au^+ ight)$	0	0	1 (-1)	1 (-1)
$\nu_{ au} \left(\overline{ u}_{ au} ight)$	0	0	1 (-1)	1 (-1)

Lepton Number Conservation

• Can the following decays occur?

Decays	$\mu^- \rightarrow e^- + \gamma$	$\mu^- \rightarrow e^- + e^+ + e^-$	$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$
\mathcal{L}_{e}	$0 \rightarrow 1 + 0$	$0 \rightarrow 1 - 1 + 1$	$0 \rightarrow 1 - 1 + 0$
\mathcal{L}_{μ}	$1 \rightarrow 0 + 0$	$1 \rightarrow 0 + 0 + 0$	$1 \rightarrow 0 + 0 + 1$
\mathcal{L}_{τ}	$0 \rightarrow 0 + 0$	$0 \rightarrow 0 + 0 + 0$	$0 \rightarrow 0 + 0 + 0$
$\mathcal{L} = \mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{\tau}$	$1 \rightarrow 1 + 0$	$1 \rightarrow 1 - 1 + 1$	$1 \rightarrow 1 - 1 + 1$

- Case 1: \mathcal{L} is conserved but \mathcal{L}_e and \mathcal{L}_μ not conserved
- Case 2: \mathcal{L} is conserved but \mathcal{L}_e and \mathcal{L}_μ not conserved
- Case 3: \pounds is conserved, and \pounds_{e} and \pounds_{μ} are also conserved

Quantum Numbers

- Baryon Number (B)
 - The additive and conserved quantum number assigned to baryons
 - All baryons have B=1
 - Anti-baryons have B= -1
 - Photons, leptons and mesons have B=0
- Lepton Number
 - The quantum number assigned to leptons
 - All leptons carry \mathcal{L} =1 (particles) or \mathcal{L} =-1 (antiparticles)
 - Photons or hadrons carry $\mathcal{L}=0$
 - Total lepton number must be conserved
 - Lepton numbers by species must be conserved

Monday, Nov. 14, 2016

PHYS 3446, Fall 2016

Strangeness

- From cosmic ray shower observations
 - K-mesons and Σ & Λ^0 baryons are produced strongly w/ large x-sec's
 - But their lifetimes are typical of weak interactions (~10⁻¹⁰ sec)
 - They are produced in pairs a K with a Σ or a K with a Λ^0
 - Gave an indication of a new quantum number
- Consider the reaction $\pi^- + p \rightarrow K^0 + \Lambda^0$
 - -~ K^0 and Λ^0 subsequently decay

$$\neg \Lambda^0 \rightarrow \pi^- + p$$
 and $K^0 \rightarrow \pi^+ + \pi^-$

- Observations on Λ^0
 - Always produced with a K⁰ never with just a π^0
 - Produced with a K⁺ but not with a K⁻

$$\pi^- + p \rightarrow K^+ + \pi^- + \Lambda^0$$

$$\pi^{-} + p \not\rightarrow K^{-} + \pi^{+} + \Lambda^{0} \qquad \pi^{-} + p \not\rightarrow \pi^{-} + \pi^{+} + \Lambda^{0}$$

Monday, Nov. 14, 2016

PHYS 3446, Fall 2016