PHYS 1441 – Section 001 Lecture #23 Monday, Dec. 4, 2017

Dr. Jaehoon Yu

- Chapter 30: Inductance
 - Mutual and Self Inductance
 - Energy Stored in Magnetic Field
 - Alternating Current and AC Circuits
 - AC Circuit W/ LRC
- Chapter 31: Maxwell's Equations
 - Expansion of Ampere's Law

Announcements

- Reading Assignments
 - CH30.10 and CH30.11
- Final exam
 - Date and time: 11am 12:30pm, Monday, Dec. 11 in SH101
 - Comprehensive exam: covers CH21.1 through what we finish this Wednesday, Dec. 6
 - Bring your calculator but DO NOT input formula into it!
 - Cell phones or any types of computers cannot replace a calculator!
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of <u>handwritten</u> formulae and values of constants
 - No derivations, word definitions or solutions of any kind!
 - No additional formulae or values of constants will be provided!

Inductance

- Changing magnetic flux through a circuit induce an emf in that circuit
- An electric current produces a magnetic field
- From these, we can deduce
 - A changing current in one circuit must induce an emf in a nearby circuit → Mutual inductance
 - Or induce an emf in itself \rightarrow Self inductance

Mutual Inductance

- If two coils of wire are placed near each other, a changing current in one will induce an emf in the other.
- What is the induced emf, ε₂, in coil2 proportional to?
 Rate of the change of the magnetic flux passing through it
- This flux is due to current I_1 in coil 1
- If Φ_{21} is the magnetic flux in each loop of coil2 created by coil1 and N₂ is the number of closely packed loops in coil2, then N₂ Φ_{21} is the total flux passing through coil2.
- If the two coils are fixed in space, $N_2 \Phi_{21}$ is proportional to the current I_1 in coil 1, $N_2 \Phi_{21} = M_{21}I_1$.
- The proportionality constant for this is called the Mutual Inductance and defined as $M_{21} = N_2 \Phi_{21}/I_1$.
- The emf induced in coil2 due to the changing current in coil1

62

(induced)

Mutual Inductance

- The mutual induction of coil2 with respect to coil1, M₂₁,
 - is a constant and does not depend on I_1 .
 - depends only on "geometric" factors such as the size, shape, number of turns and relative position of the two coils, and whether a ferromagnetic material is present What? Does this make sense?
 - The farther apart the two coils are the less flux can pass through coil, 2, so M₂₁ will be less.
 - In most cases the mutual inductance is determined experimentally
- Conversely, the changing current in coil2 will induce an emf in coil1
- $\varepsilon_1 = -M_{12} \frac{dI_2}{dt}$ - M_{12} is the mutual inductance of coil1 with respect to coil2 and $M_{12} = M_{21}$ $\varepsilon_1 = -M \frac{dI_2}{dt}$ and $\varepsilon_2 = -M \frac{dI_1}{dt}$
 - We can put $M=M_{12}=M_{21}$ and obtain
 - SI unit for mutual inductance is henry (H)

Wednesday, Nov. 29, 2017

 $1H = 1V \cdot s/A = 1\Omega \cdot s$

Example 30 – 1

Solenoid and coil. A long thin solenoid of length ℓ and cross-sectional area A contains N₁ closely packed turns of wire. Wrapped around it is an insulated coil of N₂ turns. Assuming all the flux from coil 1 (the solenoid) passes through coil 2, calculate the mutual inductance.

First we need to determine the flux produced by the solenoid. What is the magnetic field inside the solenoid? $B = \frac{\mu_0 N_1 I_1}{r}$

Since the solenoid is closely packed, we can assume that the field lines are perpendicular to the surface area of the coils. Thus the flux through coil 2 is $\Phi_{21} = BA = \frac{\mu_0 N_1 I_1}{I} A$

Thus the mutual inductance of coil 2 is $M_{21} = \frac{N_2 \Phi_{21}}{I_1} = \frac{N_2}{I_1} \frac{\mu_0 N_1 I_1}{l} A = \frac{\mu_0 N_1 N_2}{l} A$ Wednesday, Nov. 2 2017 Note that M₂₁ only depends on geometric factors!

Self Inductance

- The concept of inductance applies to a single isolated coil of N turns. How does this happen?
 - When a changing current passes through a coil
 - A changing magnetic flux is produced inside the coil
 - The changing magnetic flux in turn induces an emf in the same coil
 - This emf opposes the change in flux. Whose law is this?
 - Lenz's law
- What would this do?
 - When the current through the coil is increasing?
 - The increasing magnetic flux induces an emf that opposes the original current
 - This tends to impedes its increase, trying to maintain the original current
 - When the current through the coil is decreasing?
 - The decreasing flux induces an emf in the same direction as the current
 - This tends to increase the flux, trying to maintain the original current

Self Inductance

- Since the magnetic flux $\Phi_{\rm B}$ passing through N turn coil is proportional to current *I* in the coil, $N\Phi_B = LI$
- We define self-inductance, \mathcal{L} :

Self Inductance

- The induced emf in a coil of self-inductance \mathcal{L} is - $\varepsilon = -N \frac{d\Phi_B}{dt} = -L \frac{dI}{dt}$ - What is the unit for self-inductance? $1H = 1V \cdot s/A = 1\Omega \cdot s$
- What does magnitude of \mathcal{L} depend on?
 - Geometry and the presence of a ferromagnetic material
- Self inductance can be defined for any circuit or part of a circuit

So what in the world is the Inductance?

- It is an impediment onto the electrical current due to the existence of changing flux
- So what?
- In other words, it behaves like a resistance to the varying current, such as AC, that causes the constant change of flux
- But it also provides means to store energy, just like the capacitance

Self Inductance

- The concept of inductance applies to a single isolated coil of N turns. How does this happen?
 - When a changing current passes through a coil
 - A changing magnetic flux is produced inside the coil
 - The changing magnetic flux in turn induces an emf in the same coil
 - This emf opposes the change in flux. Whose law is this?
 - Lenz's law
- What would this do?
 - When the current through the coil is increasing?
 - The increasing magnetic flux induces an emf that opposes the original current
 - This tends to impedes its increase, trying to maintain the original current
 - When the current through the coil is decreasing?
 - The decreasing flux induces an emf in the same direction as the current
 - This tends to increase the flux, trying to maintain the original current

Self Inductance

- Since the magnetic flux $\Phi_{\rm B}$ passing through N turn coil is proportional to current *I* in the coil, $N\Phi_B = LI$
- We define self-inductance, \mathcal{L} :

Self Inductance

- The induced emf in a coil of self-inductance \mathcal{L} is - $\varepsilon = -N \frac{d\Phi_B}{dt} = -L \frac{dI}{dt}$ - What is the unit for self-inductance? $1H = 1V \cdot s/A = 1\Omega \cdot s$
- What does magnitude of \mathcal{L} depend on?
 - Geometry and the presence of a ferromagnetic material
- Self inductance can be defined for any circuit or part of a circuit

So what in the world is the Inductance?

- It is an impediment onto the electrical current due to the existence of changing flux
- So what?
- In other words, it behaves like a resistance to the varying current, such as AC, that causes the constant change of flux
- But it also provides means to store energy, just like the capacitance

Inductor

- An electrical circuit always contains some inductance but is normally negligibly small
 - If a circuit contains a coil of many turns, it could have large inductance
- A coil that has significant inductance, *L*, is called an inductor and is express with the symbol
 - Precision resisters are normally wire wound
 - Would have both resistance and inductance
 - The inductance can be minimized by winding the wire back on itself in opposite direction to cancel magnetic flux
 - This is called a "non-inductive winding"
- If an inductor has negligible resistance, inductance controls the changing current
- For an AC current, the greater the inductance the less the AC current
 - An inductor thus acts like a resistor to impede the flow of alternating current (not to DC, though. Why?)
 - The quality of an inductor is indicated by the term <u>reactance</u> or <u>impedance</u>

Example 30 – 3

Solenoid inductance. (a) Determine the formula for the self inductance \mathcal{L} of a tightly wrapped solenoid (a long coil) containing N turns of wire in its length ℓ and whose cross-sectional area is A. (b) Calculate the value of \mathcal{L} if N=100, ℓ =5.0cm, A=0.30cm² and the solenoid is air filled. (c) calculate \mathcal{L} if the solenoid has an iron core with μ =4000 μ_0 .

What is the magnetic field inside a solenoid? $B = \mu_0 nI = \mu_0 NI/l$ The flux is, therefore, $\Phi_B = BA = \mu_0 NIA/l$ Using the formula for self inductance: $L = \frac{N\Phi_B}{r} = \frac{N \cdot \mu_0 N I A/l}{I} = \frac{\mu_0 N^2 A}{I}$ (b) Using the formula above $L = \frac{\mu_0 N^2 A}{l} = \frac{\left(4\pi \times 10^{-7} T \cdot m/A\right) 100^2 \left(0.30 \times 10^{-4} m^2\right)}{5.0 \times 10^{-2} m} = 7.5 \mu H$ (c) The magnetic field with an iron core solenoid is $B = \mu NI/l$ $L = \frac{\mu N^2 A}{l} = \frac{4000 \left(4\pi \times 10^{-7} T \cdot m/A\right) 100^2 \left(0.30 \times 10^{-4} m^2\right)}{5.0 \times 10^{-2} m} = 0.030 H = 0.030 H$ Dr. Jaehoon Yu

Energy Stored in the Magnetic Field

When an inductor of inductance
 L is carrying current
 I which is changing at a rate d *I*/dt, energy is supplied
 to the inductor at a rate

$$- P = I\varepsilon = IL\frac{dI}{dt}$$

- What is the work needed to increase the current in an inductor from 0 to *I*?
 - The work, dW, done in time dt is dW = Pdt = LIdI
 - Thus the total work needed to bring the current from 0 to *I* in an inductor is $W = \int dW = \int_0^I LIdI = L \left[\frac{1}{2}I^2\right]_0^I = \frac{1}{2}LI^2$

Energy Stored in the Magnetic Field

• The work done to the system is the same as the energy stored in the inductor when it is carrying current *I*

$$-\frac{1}{2}LI^2$$

Energy Stored in a magnetic field inside an inductor

- This is compared to the energy stored in a capacitor, C, when the potential difference across it is V: $U = \frac{1}{2}CV^2$
- Just like the energy stored in a capacitor is considered to reside in the electric field between its plates
- The energy in an inductor can be considered to be stored in its magnetic field

Stored Energy in terms of B

- So how is the stored energy written in terms of magnetic field B?
 - Inductance of an ideal solenoid without a fringe effect

 $L = \mu_0 N^2 A / l$

- The magnetic field in a solenoid is $B = \mu_0 NI/l$
- Thus the energy stored in an inductor is

$$U = \frac{1}{2}LI^{2} = \frac{1}{2}\frac{\mu_{0}N^{2}A}{l}\left(\frac{Bl}{\mu_{0}N}\right)^{2} = \frac{1}{2}\frac{B^{2}}{\mu_{0}}$$

$$U = \frac{1}{2}\frac{B^{2}}{\mu_{0}}Al$$

- This formula is valid in any region of space
- If a ferromagnetic material is present, μ_0 becomes μ .

What volume does *Al* represent?

The volume inside a solenoid!!

Example 30 – 5

Energy stored in a coaxial cable. (a) How much energy is being stored per unit length in a coaxial cable whose conductors have radii r_1 and r_2 and which carry a current *I*? (b) Where is the energy density highest?

(a) The total flux through ℓ of the cable is $\Phi_B = \int Bl \, dr = \frac{\mu_0 Il}{2\pi} \int_{r_1}^{r_2} \frac{dr}{r} = \frac{\mu_0 Il}{2\pi} \ln \frac{r_2}{r_1}$

Thus inductance per unit length for a coaxial cable is $\frac{L}{l} = \frac{\mu_0}{2\pi} \ln \frac{r_2}{r_1}$

Thus the energy stored per unit length is $\frac{U}{l} = \frac{1}{2} \frac{LI^2}{l} = \frac{\mu_0 I^2}{4\pi} \ln \frac{r_2}{r_1}$

(b) Since the magnetic field is $B = \frac{\mu_0 I}{2\pi r}$

And the energy density is

$$u = \frac{1}{2} \frac{B^2}{\mu_0}$$

The energy density is highest where B is highest. Since B is highest close to $r=r_1$, near the surface of the inner conductor.

LR Circuits

- What happens when an emf is applied to an inductor?
 - An inductor has some resistance, however negligible
 - So an inductor can be drawn as a circuit of separate resistance
 and coil. What is the name this kind of circuit? IR Circuit
 - What happens at the instance the switch is thrown to apply emf to the circuit?
 - The current starts to flow, gradually increasing from 0
 - This change is opposed by the induced emf in the inductor → the emf at point B is higher than point C
 - However there is a voltage drop at the resistance which reduces the voltage across inductance
 - Thus the current increases less rapidly
 - The overall behavior of the current is a gradual increase, reaching to the maximum current $I_{max} = V_0 / R_1$.

Monday, Dec. 4, 2017

Switch

LR Circuits This can be shown w/ Kirchhoff loop rules

- The emfs in the circuit are the battery voltage V₀ and the emf ε =- $\mathcal{L}(dI/dt)$ in the inductor opposing the current increase
- The sum of the potential changes through the circuit is

$$V_0 + \varepsilon - IR = V_0 - L \, dI/dt - IR = 0$$

- Where *I* is the current at any instance
- By rearranging the terms, we obtain a differential e
- $-L dI/dt + IR = V_0$
- We can integrate just as in RC circuit So the solution is $-\frac{1}{R} \ln \left(\frac{V_0 IR}{V_0} \right) = \frac{t}{L}$ $\int_{I=0}^{I} \frac{dI}{V_0 IR}$ $I = V_0 \left(1 e^{-t/\tau} \right)$
- Where $\tau = L/R$
 - This is the time constant τ of the LR circuit and is the time required for the current I to reach 0.63 of the maximum

$$\frac{I}{1} = \frac{I_{\text{max}} = V_0 / R}{\frac{I_{\text{max}} = V_0 / R}{\tau = \frac{L}{R}}}$$

$$\tau = \frac{L}{R} \quad \text{Time}$$

$$T = \int_{t=0}^{t} \frac{dt}{L}$$

$$T = \frac{I_{\text{max}}}{T} = \frac{I_{\text{max}}}{T}$$

Discharge of LR Circuits If the switch is flipped away from the battery it В *5666* R The differential equation becomes Switch V_0 - L dI/dt + IR = 0- So the integration is $\int_{I_0}^{I} \frac{dI}{IR} = \int_{t=0}^{t} \frac{dt}{L}$ - Which results in the solution $\ln \frac{I}{I} = -\frac{R}{I}t$ $- I = I_0 e^{-\frac{R}{L}t} = I_0 e^{-t/\tau}$ $0.37I_0$ Time - The current decays exponentially to zero with the time

- The current decays exponentially to zero with the time constant τ =L/R
- So there always is a reaction time when a system with a coil, such as an electromagnet, is turned on or off.
- The current in LR circuit behaves almost the same as that in RC circuit but the time constant is inversely proportional to R in LR circuit unlike the RC circuit

AC Circuit w/ Resistance only

- What do you think will happen when an AC source is connected to a resistor?
- From Kirchhoff's loop rule, we obtain

$$V - IR = 0$$

• Thus

$$V = I_0 R \sin \varpi t = V_0 \sin \varpi t$$

- where $V_0 = I_0 R$
- What does this mean?
 - Current is 0 when voltage is 0 and current is in its peak when voltage is in its peak.
 - Current and voltage are "in phase"
- Energy is lost via the transformation into heat at an average rate $\overline{P} \overline{I} \overline{V} I^2 P V^2 / I$

$$\overline{P} = \overline{I} \ \overline{V} = I_{rms}^2 R = V_{rms}^2 / R$$

22

 $I = I_0 \sin \omega t$ $V = V_0 \sin \omega t$

AC Circuit w/ Inductance only From Kirchhoff's loop rule, we obtain

$$V - L\frac{dI}{dt} = 0$$

Thus

$$V = L \frac{dI}{dt} = L \frac{d(I_0 \sin \omega t)}{dt} = \omega L I_0 \cos \omega t$$

 $I = I_0 \sin \omega t$ $V = V_0 \cos \omega t$

 $= V_0 \sin(\omega t + 90^\circ)$

Using the identity $\cos \theta = \sin (\theta + 90^{\circ})$

$$V = \varpi L I_0 \sin\left(\varpi t + 90^\circ\right) = V_0 \sin\left(\varpi t + 90^\circ\right)$$

- where
$$V_0 = \overline{\varpi} L I_0$$

- What does this mean?
 - Current and voltage are "out of phase by $\pi/2$ or 90°". In other words the current _ reaches its peak $\frac{1}{4}$ cycle after the voltage

 V_0

10

0

- What happens to the energy?
 - No energy is dissipated
 - The average power is 0 at all times _
 - The energy is stored temporarily in the magnetic field _
 - Then released back to the source

AC Circuit w/ Inductance only

- How are the resistor and inductor different in terms of energy?
 - Inductor Stores the energy temporarily in the magnetic field and then releases it back to the emf source
 - Resistor Does not store energy but transforms it to thermal energy, losing it to the environment
- How are they the same?
 - They both impede the flow of charge
 - For a resistance R, the peak voltage and current are related to $V_0 = I_0 R$
 - Similarly, for an inductor we may write $V_0 = I_0 X_L$
 - Where X_L is the inductive reactance of the inductor $X_L = \sigma L$
 - What do you think is the <u>unit of the reactance</u>? Ω
 - The relationship $V_0 = I_0 X_L$ is not valid at a particular instance. Why not?
 - Since V_0 and I_0 do not occur at the same time

Monday, Dec. 4, 2017

$$V_{rms} = I_{rms} X_L$$
 is valid! 24

0 when $\omega = 0$.

Example 30 – 9

Reactance of a coil. A coil has a resistance $R=1.00\Omega$ and an inductance of 0.300H. Determine the current in the coil if (a) 120 V DC is applied to it; (b) 120 V AC (rms) at 60.0Hz is applied.

Is there a reactance for DC? Nope. Why not? Since

So for DC power, the current is from Kirchhoff's rule'

$$X_L = \boldsymbol{\varpi} L = 0$$
$$V - IR = 0$$

 $I_{rms} \approx \frac{V_{rms}}{X_L} = \frac{120V}{113\Omega} = 1.06A$

$$I_0 = \frac{V_0}{R} = \frac{120V}{1.00\Omega} = 120A$$

For an AC power with f=60Hz, the reactance is

$$X_L = \varpi L = 2\pi f L = 2\pi \cdot (60.0s^{-1}) \cdot 0.300H = 113\Omega$$

Since the resistance can be ignored compared to the reactance, the rms current is

AC Circuit w/ Capacitance only

- What happens when a capacitor is connected to a DC power source?
 - The capacitor quickly charges up.
 - There is no steady current flow in the circuit
 - Since the capacitor prevents the flow of the DC current
- What do you think will happen if it is connected to an AC power source?
 - The current flows continuously. Why?
 - When the AC power turns on, charge begins to flow one direction, charging up the plates
 - When the direction of the power reverses, the charge flows in the opposite direction

AC Circuit w/ Capacitance only

• From Kirchhoff's loop rule, we obtain $V = \frac{Q}{2}$

• The current at any instance is $I = \frac{dQ}{L} = I_0 \sin \omega t$

• The charge Q on the plate at any instance is

$$Q = \int_{Q=0}^{Q} dQ = \int_{t=0}^{t} I_0 \sin \varpi t dt = -\frac{I_0}{\varpi} \cos \varpi t$$

• Thus the voltage across the capacitor is

$$V = \frac{Q}{C} = -I_0 \frac{1}{\varpi C} \cos \varpi t$$

- Using the identity $\cos \theta = -\sin(\theta - 90^\circ)$

$$V = I_0 \frac{1}{\varpi C} \sin\left(\varpi t - 90^\circ\right) = V_0 \sin\left(\varpi t - 90^\circ\right)$$

– Where

 $- V_0 = \frac{I_0}{\varpi C}$

Monday, Dec. 4, 2017

PHYS 1444-002, Fall 2017 Dr. Jaehoon Yu

AC Circuit w/ Capacitance only

- So the voltage is $V = V_0 \sin(\varpi t 90^\circ)$
- What does this mean?
 - Current and voltage are "out of phase by $\pi/2$ or 90°" but in this case, the voltage reaches its peak 1/4 cycle after the current
- What happens to the energy?
 - No energy is dissipated
 - The average power is 0 at all times
 - The energy is stored temporarily in the electric field
 - Then released back to the source
- Applied voltage and the current in the capacitor can be written as $V_0 = I_0 X_C$ $X_C = -$
 - Where the capacitive reactance X_c is defined as
 - Again, this relationship is only valid for rms quantities

Monday, Dec. 4, 2017

0

 V_0

28

 σc

Example 30 – 10

Capacitor reactance. What are the peak and rms current in the circuit in the figure if C=1.0 μ F and V_{rms}=120V? Calculate for (a) *f*=60Hz, and then for (b) *f*=6.0x10⁵Hz.

The peak voltage is $V_0 = \sqrt{2}V_{rms} = 120V \cdot \sqrt{2} = 170V$

The capacitance reactance is

$$X_{C} = \frac{1}{\varpi C} = \frac{1}{2\pi fC} = \frac{1}{2\pi fC} = \frac{1}{2\pi \cdot (60s^{-1}) \cdot 1.0 \times 10^{-6}F} = 2.7k\Omega$$

Thus the peak current is

$$I_0 = \frac{V_0}{X_C} = \frac{170V}{2.7k\Omega} = 63mA$$

The rms current is

$$I_{rms} = \frac{V_{rms}}{X_C} = \frac{120V}{2.7k\Omega} = 44mA$$

AC Circuit w/ LRC

- The voltage across each element is
 - $-V_R$ is in phase with the current
 - V_L leads the current by $90^{\rm o}$
 - V_C lags the current by 90°
- From Kirchhoff's loop rule
- V=V_R+V_L+V_C

- However since they do not reach the peak voltage at the same time, the peak voltage of the source V_0 will not equal $V_{R0}+V_{L0}+V_{C0}$
- The rms voltage also will not be the simple sum of the three
- Let's try to find the total impedance, peak current I_0 and the phase difference between I_0 and V_0 .

AC Circuit w/ LRC The current at any instance is the same at all point in the circuit

- - The currents in each elements are in phase
 - Why?
 - Since the elements are in series
 - How about the voltage?
 - They are not in phase.
- The current at any given time is

 $I = I_0 \sin \varpi t$

- The analysis of LRC circuit is done using the "phasor" diagram in which arrows are drawn in an xy plane to represent the amplitude of each voltage, just like vectors
 - The lengths of the arrows represent the magnitudes of the peak voltages across _ each element; $V_{R0}=I_0R$, $V_{L0}=I_0X_L$ and $V_{C0}=I_0X_C$
 - The angle of each arrow represents the phase of each voltage relative to the current, and the arrows rotate at the angular frequency ω to take into account the time dependence.
 - The projection of each arrow on y axis represents voltage across each element at any given time

AC Circuit w/ LRC

- Since the sum of the projections of the three vectors on the y axis is equal to the projection of their sum.
 - The sum of the projections represents the instantaneous voltage across the whole circuit which is the source voltage
 - So we can use the sum of all vectors as the representation of the peak source voltage V_0 .

33

- V_0 forms an angle ϕ to V_{R0} and rotates together with the other vectors as a function of time, $V = V_0 \sin(\varpi t + \phi)$
- We determine the total impedance Z of the circuit defined by the relationship $V_{rms} = I_{rms}Z$ or $V_0 = I_0Z$
- From Pythagorean theorem, we obtain

$$V_{0} = \sqrt{V_{R0}^{2} + (V_{L0} - V_{C0})^{2}} = \sqrt{I_{0}^{2}R^{2} + I_{0}^{2}(X_{L} - X_{C})^{2}} = I_{0}\sqrt{R^{2} + (X_{L} - X_{C})^{2}} = I_{0}Z$$

• Thus the total impedance is $Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + (\varpi L - \frac{1}{\varpi C})^2}$

AC Circuit w/ LRC

- The phase angle ϕ is
- $\tan \phi = \frac{V_{L0} V_{C0}}{V_{R0}} = \frac{I_0 \left(X_L X_C\right)}{I_0 R} = \frac{\left(X_L X_C\right)}{R}$ Or $\cos\phi = \frac{V_{R0}}{V_0} = \frac{I_0 R}{I_0 Z} = \frac{R}{Z}$
- What is the power dissipated in the circuit?
 - Which element dissipates the power?
 - Only the resistor
- The average power is $\overline{P} = I_{rms}^2 R$
 - Since R=Zcosφ

We obtain
$$\overline{P} = I_{rms}^2 Z \cos \phi = I_{rms} V_{rms} \cos \phi$$

- The factor $\cos \phi$ is referred as the power factor of the circuit
- For a pure resistor, $\cos \phi = 1$ and $\overline{P} = I_{rms} V_{rms}$
- For a capacitor or inductor alone ϕ =-90° or +90°, so cos ϕ =0 and $\overline{P}=0.$

