PHYS 1441 – Section 002 Lecture #2 Wednesday, Aug. 29, 2018

/ednesday, Aug. 29, 201 Dr. **Jae**hoon **Yu**

- What do we want from this class?
- Brief history of physics
- Some basics
- Ch 21
 - Static Electricity and Charge Conservation
 - Charges in Atom, Insulators and Conductors
 & Induced Charge
 - Coulomb's Law

Announcements

- 93/101 of you have registered in the homework system.
 - 83/93 submitted the homework!
 - Fantastic job!!
 - You need my enrollment approval... So move quickly...
 - Remember, the deadline for the first freebee homework is 11pm today, Wednesday, Aug. 29
 - You <u>MUST</u> submit the homework to obtain 100% credit!
 - Also please be sure to make the payment in time otherwise your access as well as my access to the site for grading is cut.
- Reading assignment: CH21 7
- Quiz at the beginning of the class, Wed. Sept. 5
 - Appendix A1 A8 and what we've learned today!
- No class coming Monday, Sept. 3, Labor Day

Extra Credit Special Project #1

- Compare the Coulomb force to the Gravitational force in the following cases by expressing Coulomb force (F_C) in terms of the gravitational force (F_G)
 - Between two protons separated by 1m
 - Between two protons separated by an arbitrary distance R
 - Between two electrons separated by 1m
 - Between two electrons separated by an arbitrary distance R
- Five points each, totaling 20 points
- BE SURE to show all the details of your work, including all formulae, proper references to them and explanations
- Please staple them before the submission
- Due at the beginning of the class Wednesday, Sept. 5

Wednesday, Aug. 29, 2018

What can you expect from this class?

- All A's?
 - This would be really nice, wouldn't it?
 - But if it is too easy it is not fulfilling or meaningful....
- This class is not going to be a stroll in the park!!
- You will earn your grade in this class.
 - You will need to put in sufficient time and sincere efforts
 - Exams and quizzes will be tough!!
 - Sometimes problems may not look exactly like what you learned in the class
 - Just putting the right answer for free response problems does not work!
- But you have a great control (up to 45%) of your grade in your hands
 - Homework is 25% of the total grade!!
 - Means you will have many homework problems
 - Sometimes much more than any other classes
 - Some homework problems will be something that you have yet to learn in class
 - Exam problems will be easier than homework problems but the same principles!!
 - Lab 10%
 - Extra credit 10%
- I will work with you so that your efforts are properly rewarded

What do we want to learn in this class?

- Physics is everywhere around you.
- Skills to understand the fundamental principles that surrounds you in everyday lives...
- Skills to identify what laws of physics applies to what phenomena and use them appropriately
- Understand the impact of physical laws and apply them
- Learn skills to think, research and analyze observations.
- Learn skills to express observations and measurements in mathematical language
- Learn skills to express your understanding in a systematic manner in writing
- But most importantly the confidence in your physics ability and to take on any challenges laid in front of you!!

Even more importantly, let us have a lot of FUN!!

Specifically, in this course, you will learn...

- Concept of Electricity and Magnetism
- Electric charge and magnetic poles
- Electric and Magnetic Forces
- Electric and magnetic potential and energies
- Propagation of electric and magnetic fields
- Relationship between electro-magnetic forces and light
- Behaviors of light and optics, the study of it
- Special relativity and quantum theories

How to be successful in this course?

- Keep up with the class for comprehensive understanding of materials
 - Come to the class and participate in the discussions and problems solving sessions diligently
 - Follow through the lecture notes after each lecture
 - Work out example problems in the book yourself without looking at the solution
 - Have many tons of fun in the class!!!!!
- Keep up with the homework to put the last nail in the coffin
 - One can always input the answers as you solve problems. Do NOT wait till you are done with all the problems.
 - Form a study group and discuss how to solve problems with your friends, then work the problems out on your own!
- Prepare for upcoming classes
 - Read the textbook for the material to be covered in the next class
- The extra mile
 - Work out additional problems in the back of the book starting the easiest problems to harder ones

Wednesday, Aug. 29, 2018

Why do Physics?

- Exp. To understand nature through experimental
 observations and measurements (Research)
- Establish limited number of fundamental laws, usually with mathematical expressions
 Predict the nature's course Theory

 - ⇒Theory and Experiment work hand-in-hand
 - \Rightarrow Discrepancies between experimental measurements and theory are good for improvements
 - \Rightarrow The general principles formulated through theory is used to improve our everyday lives, even though some laws can take a while till we see them amongst us

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism, and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time, and energy (mechanics)
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast, and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Models, Theories and Laws

- Models: An analogy or a mental image of a phenomena in terms of something we are familiar with
 - Thinking light as waves, behaving just like water waves
 - Often provide insights for new experiments and ideas
- Theories: More systematically improved version of models
 - Can provide quantitative predictions that are testable and more precise
- Laws: Certain concise but general statements about how nature behaves
 - Energy conservation law
 - The statement must be found experimentally valid to become a law
- Principles: Less general statements of how nature behaves

 Has some level of arbitrariness

Uncertainties

- Physical measurements have limited precision, however good they are, due to:
- Stat.{ Number of measurements
- Quality of instruments (meter stick vs micro-meter)
 Syst. Experience of the person doing measurements
 - In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values

Significant Figures

- Denote the precision of the measured values
 - The number 80 implies precision of +/- 1, between 79 and 81
 - If you are sure to +/-0.1, the number should be written 80.0
 - Significant figures: non-zero numbers or zeros that are not placeholders
 - 34, 34.2, 0.001, 34.100
 - 34 has two significant digits
 - 34.2 has 3
 - 0.001 has one because the 0's before 1 are place holders to position "."
 - 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - When there are many 0's, use scientific notation for simplicity:
 - $-3140000=3.14\times10^{7}$
 - $0.00012 = 1.2 \times 10^{-4}$
 - How about 3000?

2018

- This book assumes all 0's are significant but it could be different in other cases! Wednesday, Aug. 29, PHYS 1444-002, Fall 2018 12 Dr. Jaehoon Yu

Significant Figures

- Operational rules:
 - Addition or subtraction: Keep the <u>smallest number of</u> <u>decimal place</u> in the result, independent of the number of significant digits: 12.001+ 3.1= 15.1
 - Multiplication or Division: Keep the <u>smallest number of</u> <u>significant digits</u> in the result: $12.001 \times 3.1 = 37$, because the smallest significant figures is ?

What does this mean?

In English?

Wednesday, Aug. 29, 2018

PHYS 1444-002, Fall 2018 Dr. Jaehoon Yu

SI Base Quantities and Units

Quantity	Unit	Unit Abbrevation
Length	Meter	m
Time	Second	S
Mass	Kilogram	kg
Electric current	Ampere	A
Temperature	Kelvin	k
Amount of substance	Mole	mol
Luminous Intensity	Candela	cd

•There are prefixes that scales the units larger or smaller for convenience (see pg. 7)

Prefixes, expressions and their meanings **Smaller** Larger

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸
- zetta (Z): 10²¹
- yotta (Y): 10²⁴

Wednesday, Aug. 29, 2018

Dr. Jaehoon Yu

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (µ): 10⁻⁶
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸
- zepto (z): 10⁻²¹
- yocto (y): 10⁻²⁴

15

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	cm
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	m
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

