PHYS 1441 – Section 002 Lecture #4

Monday, Sept. 10, 2018 Dr. **Jae**hoon **Yu**

- Ch 21
 - Coulomb Force
 - Vector Fundamentals
 - The Electric Field & Field Lines
 - Electric Fields and Conductors
 - Motion of a Charged Particle in an Electric Field
 - Electric Dipoles

Today's homework is homework #3, due 11pm, Monday, Sept. 17!!

Announcements

- 1st Term exam
 - In class, Wednesday, Sept. 19: DO NOT MISS THE EXAM!
 - CH21.1 to what we learn on Monday, Sept. 17 + Appendices
 A1 A8
 - You can bring your calculator but it must not have any relevant formula pre-input
 - No phone or computers can be used as a calculator!
 - BYOF: You may bring one 8.5x11.5 sheet (front and back) of handwritten formulae and values of constants for the exam
 - No derivations, word definitions, or solutions of ANY problems !
 - No additional formulae or values of constants will be provided!

Special Project #2 – Angels & Demons

- Compute the total possible energy released from an annihilation of xx-grams of anti-matter and the same quantity of matter, where xx is the last two digits of your SS#. (20 points)
 - Use the famous Einstein's formula for mass-energy equivalence
- Compute the power output of this annihilation when the energy is released in yy ns, where yy is the first two digits of your SS#. (10 points)
- Compute how many cups of gasoline (8MJ) this energy corresponds to. (5 points)
- Compute how many months of world electricity usage (3.6GJ/mo) this energy corresponds to. (5 points)
- Due by the beginning of the class Monday, Sept. 24

The Coulomb Force Refresher

$$F \propto \frac{Q_1 \times Q_2}{r^2} \quad Formula \quad F = k \frac{Q_1 Q_2}{r^2}$$

- Is Coulomb force a scalar quantity or a vector quantity? Unit?
 - A vector quantity. The unit is Newtons (N)!
- The direction of electric (Coulomb) force is always along the line joining the two objects.
 - If the two charges are the same: forces are directed away from each other.
 - If the two charges are opposite: forces are directed toward each other.
- Coulomb force is precise to 1 part in 10¹⁶.
- Unit of charge is called Coulomb, C, in SI.
- The value of the proportionality constant, k, in Sullin unit is $k = 8.988 \times 10^9 \text{ N} \cdot \text{m}^2/C^2$
- Thus, 1C is the charge that gives F~9x10⁹N of force when placed 1m apart from each other.

 $k = 1/4\pi\varepsilon_0$ $\varepsilon_0 = 1/4\pi k = 8.85 \times 10^{-12} C^2/N \cdot m^2$

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$$

The Elementary Charge $e = 1.602 \times 10^{-19} C$

Example on Coulomb Force

• Electric force on electron by proton. Determine the magnitude of the electric force on the electron of a hydrogen atom exerted by the single proton (Q_2 =+e) that is its nucleus. Assume the electron "orbits" the proton at its average distance of r=0.53x10⁻¹⁰m.

Using Coulomb's law
$$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2} = k \frac{Q_1 Q_2}{r^2}$$

Each charge is $Q_1 = -e = -1.602 \times 10^{-19} C$ and $Q_2 = +e = 1.602 \times 10^{-19} C$

So the magnitude of the force is

$$F = \left| k \frac{Q_1 Q_2}{r^2} \right| = 9.0 \times 10^9 \, N \cdot m^2 / C^2 \frac{\left(1.6 \times 10^{-19} \, C \right) \left(1.6 \times 10^{-19} \, C \right)}{\left(0.53 \times 10^{-10} \, m \right)^2}$$
$$= 8.2 \times 10^{-8} \, N$$

Which direction? Toward each other...

Monday, Sept. 10, 2018

PHYS 1444-002, Fall 2018 Dr. Jaehoon Yu

What is the speed of the electron circling around the proton in a hydrogen atom?

Proton

 Q_2

Electron

Example 21 – 1

• Which charge exerts greater force? Two positive point charges, $Q_1 = 50 \mu C$ and $Q_2 = 1 \mu C$, are separated by distance L. Which is larger in magnitude, the force that Q_1 exerts on Q_2 or the force that Q_2 exerts on Q_1 ?

What is the force that Q_1 exerts on Q_2 ?

$$F_{12} = k \frac{Q_1 Q_2}{L^2}$$

What is the force that Q_2 exerts on Q_1 ?

$$F_{21} = k \frac{Q_2 Q_1}{L^2}$$

Therefore the magnitudes of the two forces are identical!!

Well then what is different? The direction.

Which direction?

What is this law?

Monday, Sept. 10, 2018

Opposite to each other!

Newton's third law, the law of action and reaction!!

 $Q_2 = 1\mu C$

Vector Additions and Subtractions

- Addition:
 - Triangular Method: One can add vectors by connecting the head of one vector to the tail of the other (head-to-tail)
 - Parallelogram method: Connect the tails of the two vectors and extend
 - Addition is commutative: Changing order of operation does not affect the results A+B=B+A, A+B+C+D+E=E+C+A+B+D

$$\begin{array}{c} A+B \\ A \end{array} B = B \\ A \end{array} B \\ A \end{array} OR B \\ A \end{array} A+B \\ A \end{array} A A+B \\ A \end{array}$$

- Subtraction:
 - The same as adding a negative vector: A B = A + (-B)

Since subtraction is the equivalent to adding a negative vector, subtraction is also commutative!!!

Example for Vector Addition

A force of 20.0N applies to north while another force of 35.0N applies in the direction 60.0° west of north. Find the magnitude and direction of resultant force.

Components and Unit Vectors

Coordinate systems are useful in expressing vectors in their components

Monday, Sept. 10, 2018

Unit Vectors

- Unit vectors are the ones that tells us the directions of the components
- Dimensionless
- Magnitudes are exactly 1
- Unit vectors are usually expressed in i, j, k or

$$\vec{i}, \vec{j}, \vec{k}$$

So the vector **F** can be re-written as

$$\vec{F} = F_x \vec{i} + F_y \vec{j} = \left| \vec{F} \right| \cos \theta \vec{i} + \left| \vec{F} \right| \sin \theta \vec{j}$$

Examples of Vector Operations

Find the resultant force which is the sum of F1=(2.0i+2.0j)N and F2=(2.0i-4.0j)N.

$$\vec{F}_{3} = \vec{F}_{1} + \vec{F}_{2} = \left(2.0\vec{i} + 2.0\vec{j}\right) + \left(2.0\vec{i} - 4.0\vec{j}\right)$$
$$= \left(2.0 + 2.0\right)\vec{i} + \left(2.0 - 4.0\right)\vec{j} = 4.0\vec{i} - 2.0\vec{j}\left(N\right)$$
$$\left|\vec{F}_{3}\right| = \sqrt{\left(4.0\right)^{2} + \left(-2.0\right)^{2}}$$
$$\theta = \tan^{-1}\frac{F_{3y}}{F_{3x}} = \tan^{-1}\frac{-2.0}{4.0} = -27^{\circ}$$

Find the resultant force of the sum of three forces: $F_1 = (15i+30j+12k)N$, $F_2 = (23i+14j-5.0k)N$, and $F_3 = (-13i+15j)N$.

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = (15\vec{i} + 30\vec{j} + 12\vec{k}) + (23\vec{i} + 14\vec{j} - 5.0\vec{k}) + (-13\vec{i} + 15\vec{j})$$
$$= (15 + 23 - 13)\vec{i} + (30 + 14 + 15)\vec{j} + (12 - 5.0)\vec{k} = 25\vec{i} + 59\vec{j} + 7.0\vec{k}(N)$$

Magnitude

$$\left| \overrightarrow{D} \right| = \sqrt{\left(25 \right)^2 + \left(59 \right)^2 + \left(7.0 \right)^2} = 65(N)$$

Monday, Sept. 10, 2018

PHYS 1444-002, Fall 2018 Dr. Jaehoon Yu

11

Example 21.2

 Three charges on a line. Three charged particles are arranged in a line as shown in the figure. Calculate the net electrostatic force on particle 3 (the -4µC on the right) due to other two charges.

What is the force that Q_1 exerts on Q_3 ?

$$F_{13x} = k \frac{Q_1 Q_3}{L^2} = \frac{\left(9.0 \times 10^9 \ N \cdot m^2 / C^2\right) \left(-4.0 \times 10^{-6} \ C\right) \left(-8.0 \times 10^{-6} \ C\right)}{\left(0.5m\right)^2} = 1.2N$$

What is the force that Q₂ exerts on Q₃?
$$F_{23x} = k \frac{Q_2 Q_3}{L^2} = \frac{\left(9.0 \times 10^9 \ N \cdot m^2 / \ C^2\right) \left(-4.0 \times 10^{-6} \ C\right) \left(3.0 \times 10^{-6} \ C\right)}{\left(0.2m\right)^2} = -2.7N$$

Using the vector sum of the two forces

$$F_{x} = F_{13x} + F_{23x} = 1.2 + (-2.7) = -1.5(N) \qquad F_{y} = 0(N)$$

 $\vec{F} = -1.5\vec{i}(N)$

Monday, Sept. 10, 2018

12