PHYS 1444 – Section 002 Lecture 14

Monday, Oct. 14, 2019 Dr. Jaehoon Yu

CH 25

- Electric Power
- Alternating Current
- Microscopic View of Electric Current
- Ohm's Law in Microscopic View

CH 26

- EMF and Terminal Voltage
- Resistors in Series and Parallel

Announcements

- Reading Assignments: CH25.9 and 25.10 ٠
- Mid-term exam
 - This Wednesday, Oct. 16 in class
 - Comprehensive exam which covers CH21.1 through what we cover in class today (CH26.1?) + the math refresher in A1 - A8
 - Bring your calculator but DO NOT input formula into it!
 - Cell phones or any types of computers cannot replace a calculator!
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of handwritten formulae and values of constants for the quiz
 - No derivations, word definitions, set ups or solutions of any problems! _
 - No additional formulae or values of constants will be provided!
- Mid-term grade discussions
 - From 12:00 2:30pm, Wednesday, Oct. 24 in my office (CPB342)
 - Last name starts with A D (12 12:30), E– K (12:30 1), L O (1 1:30), P S (1:30 2:00), T – Z (2-2:30)
- Suspension of Colloquium extra credit until further notice, except for
 - The two triple extra credit ones on Oct. 30 and Nov. 13 still valid. Will have a special sign-in sheet.
 - You are welcomed and encouraged to attend the seminar Monday, Oct. 14, 2019 PHYS 1444-002, Fall 2019

Example 25 – 8

Headlights: Calculate the resistance of a 40-W automobile headlight designed for 12V.

40-W Headlight

Since the power is 40W and the voltage is 12V, we use the formula with V and R.

$$P = \frac{V^2}{R} \quad \text{Solve for } R = \frac{V^2}{P} = \frac{(12V)^2}{40W} = 3.6\Omega$$

- What is the resistance of the filament of a 60W bulb?
- A 60W equivalent LED bulb draws 9.5W power. What is its resistance?
- A 100W equivalent LED bulb draws 17.5W power. What is its resistance?

Power in Household Circuits Household devices usually have small resistance

- But since they draw current, if they become large enough,
 - wires can heat up (overloaded)
 - Why is using thicker wires safer?
 - Thicker wires has less resistance, lower heat
 - Overloaded wire can set off a fire at home
- How do we prevent this?
 - Put in a switch that would disconnect the circuit when overloaded
 Compressed spring Overloaded
 - Fuse or circuit breakers
 - They open up the circuit when the current is over certain value

Example 25 – 11

Will a fuse blow?: Determine the total current drawn by all the devices in the circuit in the figure. Will a 20A breaker trip if all devices are on?

The total current is the sum of current drawn by individual device.

$$P = IV$$
 Solve for I $I = P/V$

Bulb $I_{R} = 100W/120V = 0.8A$

Heater $I_{H} = 1800W/120V = 15.0A$

Stereo $I_s = 135W/120V = 2.9A$

Dryer $I_D = 1200W/120V = 10.0A$

Total current

 $I_T = I_B + I_H + I_S + I_D = 0.8A + 15.0A + 2.9A + 10.0A = 28.7A$ What is the total power? $P_T = P + P_B + P_H + P_S + P_D =$ 100W + 1800W + 350W + 1200W = 3450WDr. Jaehoon Yu

Alternating Current

- Does the direction of the flow of current change while a battery is connected to a circuit?
 - No. Why?
 - Because its source of potential difference stays put.
 - This kind of current is called the Direct Current (DC), and it does not change its direction of flow while the battery is connected.
 - How would DC current look as a function of time?
 - Straight lines
- The generators at electric power plant produce alternating current (AC)

Dr. Jaehoon Yi

- AC reverses direction many times a second
- AC is sinusoidal as a function of time
- Most the currents supplied to homes and business are AC. Monday, Oct. 14, 2019
 PHYS 1444-002, Fal

The Alternating Current

- The voltage produced by an AC electric generator is sinusoidal
 - This is why the current is sinusoidal
- Voltage produced can be written as

 $V = V_0 \sin 2\pi f t = V_0 \sin \omega t$

What are the maximum and minimum voltages?

Time (a) DC

- $-V_0(-V_0)$ and 0
- The potential oscillates between +V $_0$ and –V $_0$, the peak voltage or the amplitude
- What is *f*?
 - The frequency, the number of complete oscillations made per second.
 - What is the unit of *f*? What is the normal size of *f* in the US?
 - f=60Hz in the US and Canada.
 - Many European countries have f=50Hz.
- $\omega = 2\pi f$

Alternating Current

- Since V=IR, if a voltage V exists across a resistance R, the current I is $I = \frac{V}{R} = \frac{V_0}{R} \sin 2\pi ft = I_0 \sin \varpi t$
- What are the maximum and minimum currents?
 - I₀ (–I₀) and 0.
 - The current oscillates between $+I_0$ and $-I_0$, the peak currents or the amplitude. The current is positive when electron flows to one direction and negative when they flow the opposite.
 - AC is as many times positive as negative. What's the average current?
 - Zero. So there is no power and no heat is produced in a heater?
 - Yes there is! The electrons actually flow back and forth, so power is delivered.

Monday, Oct. 14, 2019

• The average of the square of current and voltage are important in calculating power: $\overline{I^2} = \frac{1}{2}I_0^2$ $\overline{V^2} = \frac{1}{2}V_0^2$

Power Delivered by Alternating Current

- The square root of each of these are called root-mean-square, or rms: $I_{rms} = \sqrt{I^2} = \frac{I_0}{\sqrt{2}} = 0.707I_0$ $V_{rms} = \sqrt{V^2} = \frac{V_0}{\sqrt{2}} = 0.707V_0$
- rms values are called the effective values
 - These are useful quantities since they can substitute current and voltage directly in power, as if they are in DC

$$\overline{P} = \frac{1}{2}I_0^2 R = I_{rms}^2 R \qquad \overline{P} = \frac{1}{2}\frac{V_0^2}{R} = \frac{V_{rms}^2}{R} \qquad \overline{P} = I_{rms}V_{rms}$$

- In other words, an AC of peak voltage V₀ or peak current I₀ produces as much power as DC voltage of V_{rms} or DC current I_{rms}.
- So normally, rms values in AC are specified or measured.
 - US uses 115V rms_voltage. What is the peak voltage?
 - $V_0 = \sqrt{2}V_{rms} = \sqrt{2} \cdot 115V = 162.6V$
 - Europe uses 240V
 - $V_0 = \sqrt{2}V_{rms} = \sqrt{2} \cdot 240V = 340V$

Monday, Oct. 14, 2019

Example 25 – 13

Hair Dryer. (a) Calculate the resistance and the peak current in a 1000-W hair dryer connected to a 120-V AC line. (b) What happens if it is connected to a 240-V line in Britain?

The rms current is:
$$I_{rms} = \frac{\overline{P}}{V_{rms}} = \frac{1000W}{120V} = 8.33A$$

Motor Fan Heating coils

Cord

The peak current is:
$$I_0 = \sqrt{2}I_{rms} = \sqrt{2} \cdot 8.33A = 11.8A$$

Thus the resistance is:
$$R = \frac{P}{I_{rms}^2} = \frac{1000W}{(8.33A)^2} = 14.4\Omega$$

(b) If connected to 240V in Britain ... The average power provide by the AC in UK is

$$\overline{P} = \frac{V_{rms}^2}{R} = \frac{(240V)^2}{14.4\Omega} = 4000W$$

So? The heating coils in the dryer will melt!

Monday, Oct. 14, 2019

Microscopic View of Electric Current

- When voltage is applied across the ends of a wire
- Electric field is generated by the potential difference
- Electrons feel force and get accelerated
- Electrons soon reach to a steady average speed due to collisions with atoms in the wire, called drift velocity, $\mathbf{v}_{\rm d}$
- The drift velocity is normally much smaller than electrons' average random speed.

12

Vd

Microscopic View of Electric Current

- The drift velocity of electrons in a wire is only about 0.05mm/s. How could we get light turned on immediately then?
 - While the electrons in a wire travel slow, the electric field travels essentially at the speed of light. Then what is all the talk about electrons flowing through?
 - It is just like water. When you turn on the facet, water flows right off the facet despite the fact that the water travels slow.
 - Electricity is the same. Electrons fill the conductor wire and when the switch is flipped on or a potential difference is applied, the electrons close to the positive terminal flows into the device.
 - Interesting, isn't it? Why is the field travel at the speed of light then?

Superconductivity

- At the temperature near absolute 0K, resistivity of certain material becomes 0.
 - This state is called the "superconducting" state.
 - Observed in 1911 by H. K. Onnes when he cooled mercury to 4.2K (-269°C). → 1913 Nobel physics prize
 - Resistance of mercury suddenly dropped to 0.
 - In general superconducting materials become superconducting below a transition temperature (T_c).
 - The highest temperature superconductivity seen is 160K
 - First observation above the boiling temperature of liquid nitrogen is in 1987 at 90k observed from a compound of yttrium, barium, copper and oxygen.
- Since much smaller amount of material can carry just as much current more efficiently, superconductivity can make electric cars more practical, computers faster, and capacitors store higher energy

 T_{C}

Critical Temperature of Superconductors

Critical temperature (T_c), crystal structure and lattice constants of some high-T_c superconductors

Formula	Notation	Т _с (К)	No. of Cu-O planes in unit cell	Crystal structure
YBa ₂ Cu ₃ O ₇	123	92	2	Orthorhombic
Bi ₂ Sr ₂ CuO ₆	Bi-2201	20	1	Tetragonal
Bi2Sr2CaCu2O8	Bi-2212	85	2	Tetragonal
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{2}\mathrm{Cu}_{3}\mathrm{O}_{10}$	Bi-2223	110	3	Tetragonal
Tl ₂ Ba ₂ CuO ₆	TI-2201	80	1	Tetragonal
Tl ₂ Ba ₂ CaCu ₂ O ₈	TI-2212	108	2	Tetragonal
Tl ₂ Ba ₂ Ca ₂ Cu ₃ O ₁₀	TI-2223	125	3	Tetragonal
TIBa2Ca3Cu4O11	TI-1234	122	4	Tetragonal
HgBa ₂ CuO ₄	Hg-1201	94	1	Tetragonal
HgBa ₂ CaCu ₂ O ₆	Hg-1212	128	2	Tetragonal
HgBa ₂ Ca ₂ Cu ₃ O ₈	Hg-1223	134	3	Tetragonal

WUNUAY, UCL. 14, 2019

Electric Hazards: Leakage Currents

- How does one feel shock by electricity?
 - Electric current stimulates nerves and muscles, and we feel a shock
 - The severity of the shock depends on the amount of current, how long it acts and through what part of the body it passes
 - Electric current heats the tissue and can cause burns
- Currents above 70mA on a torso for a second or more is fatal, causing heart to function irregularly, "ventricular fibrillation".
- A dry human body between two points on opposite side of the body is about 10⁴ to 10⁶ Ω .
- When wet, it could be $10^3\Omega$.
- A person in good contact with the ground who touches 120V DC line with wet hands can get the current: $I = \frac{V}{L} = \frac{120V}{10000} = 120mA$
 - Could be lethal

 $R = 1000\Omega$