PHYS 1444 – Section 002 Lecture #23

Monday, Nov. 25, 2019 Dr. Jaehoon Yu

- Chapter 30: Inductance
 - LR Circuit
 - LC circuit and EM Oscillation
 - AC circuit with Inductor Only & Capacitor Only
- Chapter 31: Maxwell's equations
 - Expansion of Ampere's Law
 - Gauss' Law for Magnetism
 - Production of EM Waves
 - Light as EM Waves

Announcements

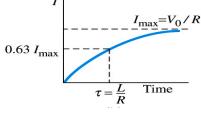
- Reading assignments: CH30.7 30.11
- Planetarium Extra Credit: bring to class Mon. Dec. 2
 - Be sure to tape one end of the ticket stub on a sheet of paper with your name on it
- Final comprehensive exam
 - In class 1:00 2:20pm, Wednesday, Dec. 4
 - Covers: CH21.1 what we finish Monday, Dec. 2
 - Bring your calculator but DO NOT input formula into it!
 - Cell phones or any types of computers cannot replace a calculator!
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of <u>handwritten</u> formulae and values of constants for the quiz
 - No derivations, word definitions, set ups or solutions of any problems!
 - NO MAXWELL's Equations!!
 - No additional formulae or values of constants will be provided!
- No class this Wednesday, Nov. 27
 - Happy Thanksgiving!
- Course evaluation survey!!

LR Circuits

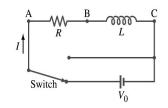
- What happens when an emf is applied to an inductor?
 - An inductor has some resistance, however negligible
 - So an inductor can be drawn as a circuit of separate resistance
 and coil. What is the name this kind of circuit? **LR Circuit**
 - What happens at the instance the switch is thrown to apply emf to the circuit?
 - The current starts to flow, gradually increasing from 0
 - This change is opposed by the induced emf in the inductor → the emf at point B is higher than point C
 - However there is a voltage drop at the resistance which reduces
 the voltage across inductance
 - Thus the current increases less rapidly
 - The overall behavior of the current is a gradual increase, reaching to the maximum current I_{max}=V₀/R.

Wednesday, Nov. 20, 2019

Switch



LR Circuits

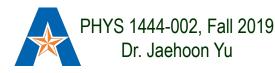


0.63 I_{max}

- This can be shown w/ Kirchhoff loop rules
 - The emfs in the circuit are the battery voltage V₀ and the emf ε =- $\mathcal{L}(dI/dt)$ in the inductor opposing the current increase
 - The sum of the potential changes through the circuit is

$$V_0 + \varepsilon - IR = V_0 - L \, dI/dt - IR = 0$$

- Where *I* is the current at any instance
- By rearranging the terms, we obtain the differential eq.
- $-L dI/dt + IR = V_0$
- We can integrate just as in RC circuit So the solution is $-\frac{1}{R}\ln\left(\frac{V_0 IR}{V_0}\right) = \frac{t}{L}$ Where $\sigma = L/P$ $\int_{I=0}^{I} \frac{dI}{V_0 IR} = \int_{t=0}^{t} \frac{dt}{L}$ $I = V_0 \left(1 e^{-t/\tau}\right)/R = I_{max} \left(1 e^{-t/\tau}\right)$
- Where τ =L/R
 - This is the time constant τ of the LR circuit and is the time required for the • current I to reach 0.63 of the maximum



 $I_{\text{max}} = V_0 / R$

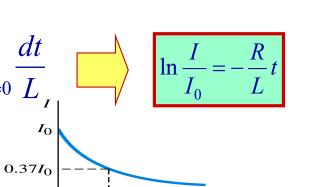
Time

 $\tau = \frac{L}{R}$

Discharge of LR Circuits

- If the switch is flipped away from the battery ,
 - The differential equation becomes
 - L dI/dt + IR = 0
 - So the integration is $\int_{I_0}^{I} \frac{dI}{IR} = -\int_{t=0}^{t} \frac{dt}{L}$ Which results in the solution

 - $I = I_0 e^{-\frac{R}{L}t} = I_0 e^{-t/\tau}$



- Time - The current decays exponentially to zero with the time constant τ =L/R
- So there always is a reaction time when a system with a coil, such as an electromagnet, is turned on or off.
- The current in LR circuit behaves almost the same as that in RC circuit but the time constant is inversely proportional to R in LR circuit unlike the RC circuit

Wednesday, Nov. 20, 2019

PHYS 1444-002, Fall 2019 Dr. Jaehoon Yu

В

9999

 V_0

₩-

R

Switch

AC Circuit w/ Resistance only

- What do you think will happen when an AC source is connected to a resistor?
- From Kirchhoff's loop rule, we obtain

$$V - IR = 0$$

• Thus

$$V = I_0 R \sin \varpi t = V_0 \sin \varpi t$$

- where $V_0 = I_0 R$
- What does this mean?
 - Current is 0 when voltage is 0 and current is in its peak when voltage is in its peak.
 - Current and voltage are "in phase"
- Energy is lost via the transformation into heat at an average rate $\overline{P} = \overline{I} \ \overline{V} = I_{rms}^2 R = V_{rms}^2 / R$

 $I = I_0 \sin \omega t$ $V = V_0 \sin \omega t$

AC Circuit w/ Inductance only From Kirchhoff's loop rule, we obtain

$$V - L\frac{dI}{dt} = 0$$

- L
- $V = L \frac{dI}{dt} = L \frac{d(I_0 \sin \omega t)}{dt} = \omega L I_0 \cos \omega t$ - Using the identity $\cos\theta = \sin(\theta + 90^\circ)$

$$V = \sigma L I_0 \sin\left(\sigma t + 90^\circ\right) = V_0 \sin\left(\sigma t + 90^\circ\right)$$

- where
$$V_0 = \vec{\omega} L I_0$$

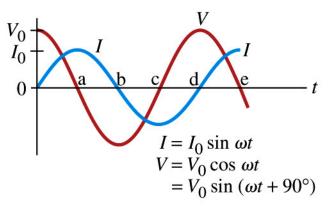
What does this mean?

Thus

- Current and voltage are "out of phase by $\pi/2$ or 90°". In other words the current reaches its peak ¹/₄ cycle after the voltage
- What happens to the energy?
 - No energy is dissipated
 - The average power is 0 at all times
 - The energy is stored temporarily in the magnetic field —
 - Then released back to the source

Wednesday, Nov. 20, 2019

ΡΗΥS 1444-υυΖ, Γαιι Ζυ Dr. Jaehoon Yu



AC Circuit w/ Inductance only

- How are the resistor and inductor different in terms of energy?
 - Inductor Stores the energy temporarily in the magnetic field and then releases it back to the emf source
 - Resistor Does not store energy but transforms it to thermal energy, losing it to the environment
- How are they similar?
 - They both impede the flow of charge
 - For a resistance R, the peak voltage and current are related to $V_0 = I_0 R$
 - Similarly, for an inductor we may write
 - Where X_L is the inductive reactance of the inductor $X_L = \varpi L$
 - What do you think is the <u>unit of the reactance</u>? Ω
 - The relationship $V_0 = I_0 X_L$ is not valid at a particular instance. Why not?
 - Since V_0 and I_0 do not occur at the same time

Wednesday, Nov. 20, 2019

$$V_{rms} = I_{rms} X_L$$
 is valid! 8

 $V_0 = I_0 X_L$

0 when ω =0.

Example 30 – 9

Reactance of a coil. A coil has a resistance R=1.00 Ω and an inductance of 0.300H. Determine the current in the coil if (a) 120 V DC is applied to it; (b) 120 V AC (rms) at 60.0Hz is applied.

Is there a reactance for DC? Nope. Why not? Since $\omega=0$, $X_L = \varpi L = 0$

So for DC power, the current is from Kirchhoff's rule V - IR = 0

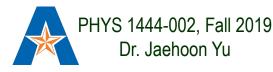
$$I_0 = \frac{V_0}{R} = \frac{120V}{1.00\Omega} = 120A$$

For an AC power with f=60Hz, the reactance is

$$X_L = \varpi L = 2\pi f L = 2\pi \cdot (60.0s^{-1}) \cdot 0.300H = 113\Omega$$

Since the resistance can be ignored compared to the reactance, the rms current is

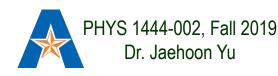
Wednesday, Nov. 20, 2019



 $I_{rms} \approx \frac{V_{rms}}{X_L} = \frac{120V}{113\Omega} = 1.06A$

AC Circuit w/ Capacitance only

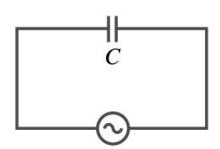
- What happens when a capacitor is connected to a DC power source?
 - The capacitor quickly charges up.
 - There is no steady current flow in the circuit
 - Since the capacitor prevents the flow of the DC current
- What do you think will happen if it is connected to an AC power source?
 - The current flows continuously. Why?
 - When the AC power turns on, charge begins to flow one direction, charging up the plates
 - When the direction of the power reverses, the charge flows in the opposite direction



AC Circuit w/ Capacitance only

 From Kirchhoff's loop rule, we obtain $V = \frac{Q}{2}$

• The current at any instance is $I = \frac{dQ}{L} = I_0 \sin \omega t$



The charge Q on the plate at any instance is

$$Q = \int_{Q=0}^{Q} dQ = \int_{t=0}^{t} I_0 \sin \varpi t dt = -\frac{I_0}{\varpi} \cos \varpi t$$

Thus the voltage across the capacitor is •

$$V = \frac{Q}{C} = -I_0 \frac{1}{\varpi C} \cos \varpi t$$

- Using the identity $\cos \theta = -\sin(\theta - 90^\circ)$

$$V = I_0 \frac{1}{\varpi C} \sin\left(\varpi t - 90^\circ\right) = V_0 \sin\left(\varpi t - 90^\circ\right)$$

Where $V_0 = \frac{I_0}{\varpi C}$

Wednesday, Nov. 20, 2019

PHYS 1444-002. Fall 2019 Dr. Jaehoon Yu

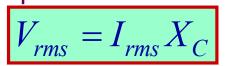
11

AC Circuit w/ Capacitance only

- So the voltage is $V = V_0 \sin(\varpi t 90^\circ)$
- What does this mean?
 - Current and voltage are "out of phase by $\pi/2$ or 90°" but in this case, the voltage reaches its peak $\frac{1}{4}$ cycle after the current
- What happens to the energy?
 - No energy is dissipated
 - The average power is 0 at all times
 - The energy is stored temporarily in the electric field
 - Then released back to the source
- Applied voltage and the current in the capacitor can be written as $V_0 = I_0 X_C$ X_{C}
 - Where the capacitive reactance $X_{\rm C}$ is defined as
 - Again, this relationship is only valid for rms quantities

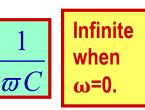
Wednesday, Nov. 20, 2019

PHYS 1444-002, Fall 2019 Dr. Jaehoon Yu

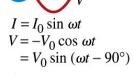


0

 V_0

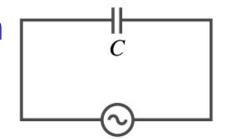


12



Example 30 – 10

Capacitor reactance. What are the peak and rms current in the circuit in the figure if C=1.0 μ F and V_{rms}=120V? Calculate for (a) *f*=60Hz, and then for (b) *f*=6.0x10⁵Hz.



The peak voltage is $V_0 = \sqrt{2}V_{rms} = 120V \cdot \sqrt{2} = 170V$

The capacitance reactance is

$$X_{C} = \frac{1}{\varpi C} = \frac{1}{2\pi fC} = \frac{1}{2\pi fC} = \frac{1}{2\pi \cdot (60s^{-1}) \cdot 1.0 \times 10^{-6}F} = 2.7k\Omega$$

Thus the peak current is

$$I_0 = \frac{V_0}{X_C} = \frac{170V}{2.7k\Omega} = 63mA$$

The rms current is

$$I_{rms} = \frac{V_{rms}}{X_C} = \frac{120V}{2.7k\Omega} = 44mA$$

Wednesday, Nov. 20, 2019

