PHYS 1441 – Section 002 Lecture #23

Wednesday, Dec. 2, 2020 Dr. **Jae**hoon **Yu**

• CH29

Ο

- Electric Field due to Changing Magnetic Flux
- Generalized Faraday's Law
- CH30
 - Inductance
 - Mutual and Self Inductance
 - Inductor
 - Energy Stored in Magnetic Field

Announcements Reading assignments: CH30.7 – 30.11 and CH31.4

- Final comprehensive exam on Quest
 - 11am 12:30pm, Wednesday, Dec. 16
 - Roll call begins at <u>10:45am, Wed. Dec. 16</u>
 - Covers: CH21.1 what we finish next Monday, Dec. 7 + math refresher
 - BYOF: You may bring a one 8.5x11.5 sheet (front and back) of handwritten formulae and values of constants for the exam
 - No derivations, word definitions, setups or solutions of any problems, figures, pictures, diagrams or arrows, etc!
 - No additional formulae or values of constants will be provided!
 - Must send me the photos of front and back of the formula sheet, including the blank, no later than 9:00am the day of the test
 - Once submitted, you cannot change, unless I ask you to delete part of the sheet!
- Quiz 4 results
 - Class average: 30.7/50 equivalent to 61.4/100
 - Previous quizzes: 80.3/100, 58.8/100, 68.3/100
 - Top score: 50/50
- Course feedback survey should be done ASAP! (only 29 of you submitted!) Wednesday, Dec. 2, 2020 PHYS 1444-002, Fall 2020 2 Dr. Jaehoon Yu

Ex. 29 – 13 Power Transmission – Why HV? Transmission lines. An average of 120kW of electric power is sent to a small town from a power plant 10km away. The transmission lines have a total resistance of 0.4Ω . Calculate the power loss if the power is transmitted at (a) 240V and (b) 24,000V. We cannot use P=V²/R for the power loss since we do not know the voltage along the transmission line. We, however, can use P=I²R since the current is the same along the entire transmission line.

(a) If 120kW is sent at 240V, the total current is $I = \frac{P}{V} = \frac{120 \times 10^3}{240} = 500A.$

Thus the power loss due to transmission line is

$$P = I^2 R = (500A)^2 \cdot (0.4\Omega) = 100kW$$

(b) If 120kW is sent at 24,000V, the total current is I =

$$=\frac{P}{V}=\frac{120\times10^{3}}{24\times10^{3}}=5.0A.$$

Thus the power loss due to transmission line is

$$P = I^2 R = \left(5A\right)^2 \cdot \left(0.4\Omega\right) = 10W$$

The higher the transmission voltage, the smaller the current, causing less loss of energy. This is why power is transmitted w/ HV, as high as 170kV.

Electric Field due to Magnetic Flux Change

- When the electric current flows through a wire, there is an electric field in the wire that moves electrons
- We also learned that changing magnetic flux induces a current in the wire. (poll 17) What does this mean?
 - There must be an electric field induced by the changing magnetic flux.
- In other words, a changing magnetic flux produces an electric field
- This results apply not just to wires but to any conductor or any region in space

Generalized Form of Faraday's Law

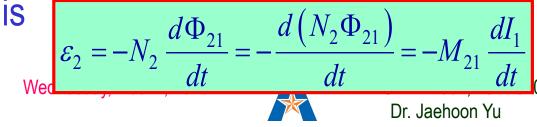
- Recall the relationship between the electric field and the potential difference $V_{ab} = \int_{a}^{b} \vec{E} \cdot d\vec{l}$
- Induced emf in a circuit is equal to the work done per unit charge by the electric field

•
$$\mathcal{E} = \int_{a}^{b} \vec{E} \cdot d\vec{l}$$

• So we obtain

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

- The integral is taken around a path enclosing the area through which the magnetic flux Φ_B is changing.


Inductance

- Changing magnetic flux through a circuit induce an emf in that circuit (Poll 17)
- An electric current produces a magnetic field
- From these, we can deduce
 - A changing current in one circuit must induce an emf in a nearby circuit → Mutual inductance
 - and induce an emf in itself \rightarrow Self inductance

Mutual Inductance

- If two coils of wire are placed near each other, a changing current in one will induce an emf in the other.
- What is the induced emf, ε₂, in coil2 proportional to?
 Rate of the change of the magnetic flux passing through it
- This flux is due to current I_1 in coil 1
- If Φ_{21} is the magnetic flux in each loop of coil2 created by coil1 and N₂ is the number of closely packed loops in coil2, then N₂ Φ_{21} is the total flux passing through coil2.
- If the two coils are fixed in space, $N_2\Phi_{21}$ is proportional to the current I_1 in coil 1, $N_2\Phi_{21} = M_{21}I_1$.
- The proportionality constant for this is called the Mutual Inductance and defined as $M_{21} = N_2 \Phi_{21}/I_1$.
- The emf induced in coil2 due to the changing current in coil1

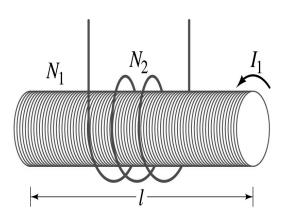
7

62

(induced)

Mutual Inductance

- The mutual induction of coil2 with respect to coil1, M_{21} ,
 - is a constant and does not depend on I_1 .
 - depends only on "geometric" factors such as the size, shape, number of turns and relative position of the two coils, and whether a ferromagnetic material is present
 - The farther apart the two coils are the less flux can pass through coil, 2, so $\rm M_{21}$ will be smaller.
 - In most cases the mutual inductance is determined experimentally
- Conversely, the changing current in coil2 will induce an emf in coil1
- $\varepsilon_1 = -M_{12} \frac{dI_2}{dt}$
 - M_{12} is the mutual inductance of coil1 with respect to coil2 and $M_{12} = M_{21}$
 - We can put M=M₁₂=M₂₁ and obtain
 - SI unit for mutual inductance is Henry (H) $1H = 1V \cdot s/A = 1\Omega \cdot s$


Wednesday, Dec. 2, 2020

 $\varepsilon_1 = -M \frac{dI_2}{dt}$ and $\varepsilon_2 = -M \frac{dI_1}{dt}$

Example 30 – 1

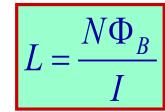
Solenoid and coil. A long thin solenoid of length ℓ and cross-sectional area A contains N₁ closely packed turns of wire. Wrapped around it is an insulated coil of N₂ turns. Assuming all the flux from coil 1 (the solenoid) passes through coil 2, calculate the mutual inductance.

First we need to determine the flux produced by the solenoid. What is the magnetic field inside the solenoid? $B = \frac{\mu_0 N_1 I_1}{r}$

Since the solenoid is closely packed, we can assume that the field lines are perpendicular to the surface area of the coils. Thus the flux through coil 2 is $\Phi_{21} = BA = \frac{\mu_0 N_1 I_1}{l} A$

Thus the mutual inductance of coil 2 is $M_{21} = \frac{N_2 \Phi_{21}}{I_1} = \frac{N_2}{I_1} \frac{\mu_0 N_1 I_1}{l} A = \frac{\mu_0 N_1 N_2}{l} A$ Wednesday, Dec. 2 Note that M₂₁ only depends on geometric factors!

9


Self Inductance

- The concept of inductance applies to a single isolated coil of N turns. How does this happen?
 - When a changing current passes through a coil
 - A changing magnetic flux is produced inside the coil
 - The changing magnetic flux in turn induces an emf in the same coil
 - This emf opposes the change in flux. Whose law is this? (Poll 17)
 - Lenz's law
- What would this do?
 - When the current through the coil is increasing?
 - The increasing magnetic flux induces an emf that opposes the original current
 - This tends to impedes its increase, trying to maintain the original current
 - When the current through the coil is decreasing?
 - The decreasing flux induces an emf in the same direction as the current
 - This tends to increase the flux, trying to maintain the original current

Self Inductance

- Since the magnetic flux Φ_B passing through an N turn coil is proportional to current *I* in the coil, $N\Phi_B = LI$
- We define self-inductance, *L*:

Self Inductance

- The induced emf in a coil of self-inductance \mathcal{L} is $\mathcal{L} = -N \frac{d\Phi_B}{dt} = -L \frac{dI}{dt}$
 - What is the unit for self-inductance? $1H = 1V \cdot s/A = 1\Omega \cdot s$
- What does magnitude of *L* depend on?
 - Geometry and the presence of a ferromagnetic material
- Self inductance can be defined for any circuit or part of a circuit

So what in the world is the Inductance?

- It is an impediment on the electrical current due to the existence of changing flux (poll 25)
- So what?
- In other words, it behaves like a resistance to the varying current, such as AC, that causes the constant change of magnetic flux
- But it also provides means to store energy, just like the capacitance

Inductor

- An electrical circuit always contains some inductance but is normally negligibly small
 - If a circuit contains a coil of many turns, it could have large inductance
- A coil that has significant inductance, *L*, is called an inductor and is express with the symbol
 - Precision resisters are normally wire wound
 - Would have both resistance and inductance
 - The inductance can be minimized by winding the wire back on itself in the opposite direction to cancel the magnetic flux
 - This is called a "non-inductive winding"
- If an inductor has negligible resistance, inductance controls the changing current
- For an AC current, the greater the inductance the less the AC current
 - An inductor thus acts like a resistor to impede the flow of alternating current (not to DC, though. Why?)
 - The quality of an inductor is indicated by the term <u>reactance</u> or <u>impedance</u>

$$X_L = \overline{o}L$$
 13

Example 30 – 3

Solenoid inductance. (a) Determine the formula for the self inductance \mathcal{L} of a tightly wrapped solenoid (a long coil) containing N turns of wire in its length \mathcal{L} and whose cross-sectional area is A. (b) Calculate the value of \mathcal{L} if N=100, ℓ =5.0cm, A=0.30cm² and the solenoid is air filled. (c) calculate \mathcal{L} if the solenoid has an iron core with μ =4000 μ_0 .

What is the magnetic field inside a solenoid? $B = \mu_0 nI = \mu_0 NI/l$ The flux is, therefore, $\Phi_B = BA = \mu_0 NIA/l$ Using the formula for self inductance: $L = \frac{N\Phi_B}{L} = \frac{N \cdot \mu_0 N I A/l}{L} = \frac{\mu_0 N^2 A}{L}$ (b) Using the formula above $L = \frac{\mu_0 N^2 A}{l} = \frac{\left(4\pi \times 10^{-7} T \cdot m/A\right) 100^2 \left(0.30 \times 10^{-4} m^2\right)}{5.0 \times 10^{-2} m} = 7.5 \mu H$ (c) The magnetic field with an iron core solenoid is $B = \mu NI/l$ $L = \frac{\mu N^2 A}{l} = \frac{4000 \left(4\pi \times 10^{-7} T \cdot m/A\right) 100^2 \left(0.30 \times 10^{-4} m^2\right)}{5.0 \times 10^{-2} m} = 0.030 H = 30 mH$ VVEUNESUAV. DEC. Z. ZUZU Dr. Jaehoon Yu