PHYS 1444 – Section 501 Lecture #1

Wednesday, Jan. 18, 2006 Dr. Jaehoon Yu

- Who am I?
- How is this class organized?
- What is Physics?
- What do we want from this class?
- Brief history of physics
- Some basics ...
- Chapter 21
 - Static Electricity and Charge Conservation
 - Charges in Atom
 - Insulators and Conductors
 - Induced Charge

Mone Today's homework is homework #1, due 7pm, next Thursday!! 1

Announcements

- Plea to you: Please turn off your cell-phones, pagers and computers in the class
- Reading assignment #1: Read and follow through all sections in appendix A by Monday, Jan. 23
 - A-1 through A-7
- There will be a quiz on this and Ch. 21 on Monday, Jan. 30.

Who am I?

- Name: Dr. Jaehoon Yu (You can call me Dr. Yu)
- Office: Rm 342, Chemistry and Physics Building
- Extension: x22814, E-mail: *jaehoonyu@uta.edu*
- My profession: High Energy Physics (HEP)
 - Collide particles (protons on anti-protons or electrons on anti-electrons, positrons) at the energies equivalent to 10,000 Trillion degrees
 - To understand
 - Fundamental constituents of matter
 - Forces between the constituents (gravitational, electro-magnetic, weak and strong forces)
 - Origin of Mass
 - Creation of Universe (**Big Bang** Theory)
 - A pure scientific research activity
 - Direct use of the fundamental laws we find may take longer than we want but
 - Indirect product of research contribute to every day lives; eg. WWW
 - Why do we do with this?
 - Make our everyday lives better

Structure of Matter

Monday, Jan. 18, 2006

4

The Standard Model

• Assumes the following fundamental structure:

Monday, Jan. 18, 2006

Fermilab Tevatron and LHC at CERN

- Present world's Highest Energy
 proton-anti-proton collider
 - − E_{cm}=1.96 TeV (=6.3x10⁻⁷J/p→ 13M Joules on 10⁻⁴m²)
 - ⇒ Equivalent to the kinetic energy of a 20t truck at a speed 80 mi/hr

- World's Highest Energy protonproton collider in 2 years
 - E_{cm}=14 TeV (=44x10⁻⁷J/p→ 1000M Joules on 10⁻⁴m²)
 - \Rightarrow Equivalent to the kinetic energy of a 20t truck at a speed 212 mi/hr

DØ Detector: Run II

- Weighs 5000 tons
- Can inspect 3,000,000 collisions/second
- Will record 50 collisions/second
- Records ~12.5M Bytes/second
- Will record 2 Peta bytes in the current run.
- Has over a 100 million parts

How does an Event Look in a Collider Detector?

Dr. Jaehoon Yu

Information & Communication Source

- My web page: <u>http://www-hep.uta.edu/~yu/</u>
 - Contact information & Class Schedule
 - Syllabus
 - Homework
 - Holidays and Exam days
 - Evaluation Policy
 - Class Style & Communication
 - Other information
- Primary communication tool is e-mail: Register for <u>PHYS1444-501-</u> <u>SPRING06 e-mail distribution list</u> as soon possible → Instruction available in Class style & Communication
 - 5 points extra credit if done by Wednesday, Jan. 25
 - 3 points extra credit if done by Monday, Jan. 30
- Office Hours: 6:50 7:50pm, Mondays and Wednesdays in SH241-C or by appointments in CPB342
 - My office door is wide open for you!!!

Evaluation Policy

- Term Exams: 45%
 - Total of three non-comprehensive term exams (2/22, 4/5 & 5/6)
 - Best two of the three will be used for the final grade
 - Each will constitute 22.5% of the total
 - Missing an exam is not permissible unless pre-approved
 - No makeup test
 - You will get an F if you miss any of the exams without a prior approval
- Lab score: 20%
- Homework: 25%
- 100% Pop-quizzes: 10%
 - Extra credits: 10% of the total
 - Random attendances
 - Strong participation in the class discussions
 - Other many opportunities
 - Will be on sliding scale unless everyone does very well

Homeworks

- Solving homework problems is the only way to comprehend class material
- An electronic homework system has been setup for you
 - Details are in the material distributed last week and on the web
 - https://hw.utexas.edu/studentInstructions.html
 - Download homework #1 (1 problem), attempt to solve it, and submit it → You will receive a 100% credit for HW#1
 - This HW is due at 7pm next Thursday, Jan. 26. So you still have some time to take advantage!
 - Roster will close next Wednesday, Feb. 1
- Each homework carries the same weight!!
- Home work will constitute <u>25% of the total</u> → A good way of keeping your grades high
- Strongly encouraged to collaborate → Does not mean you can copy
- Take advantage of the Physics Clinic: 12 6pm, M F, SH010

Attendances and Class Style

- Attendances:
 - Will be taken randomly at the beginning of each class
 - Will be used for extra credits
- Class style:
 - Lectures will be on electronic media
 - The lecture notes will be posted on the web <u>AFTER</u> each class
 - Will be mixed with traditional methods
 - Active participation through questions and discussions are
 <u>STRONGLY</u> encouraged → Extra credit....

Why do Physics?

Exp. **•** To understand nature through experimental observations and measurements (**Research**) Theory Establish limited number of fundamental laws, usually with mathematical expressions Predict the nature's course \Rightarrow Theory and Experiment work hand-in-hand \Rightarrow Theory works generally under restricted conditions \Rightarrow Discrepancies between experimental measurements and theory are good for improvements \Rightarrow Improves our everyday lives, though some laws can

take a while till we see amongst us

What do we want from this class?

- Physics is everywhere around you.
- Understand the fundamental principles that surrounds you in everyday lives...
- Identify what law of physics applies to what phenomena and use them appropriately
- Understand the impact of such physical laws
- Learn how to research and analyze what you observe.
- Learn how to express observations and measurements in mathematical languages.
- Learn how to express your research in systematic manner in writing
- I don't want you to be scared of PHYSICS!!!

Most of importantly, let us have a lot of FUN!!

