PHYS 1444 – Section 501 Lecture #5

Wednesday, Feb. 1, 2006 Dr. <mark>Jae</mark>hoon <mark>Yu</mark>

- Gauss' law with many charges
- What is Gauss' law good for?
- Electric Potential Energy
- Electric Potential

Today's homework is #3, due 7pm, Thursday, Feb. 9!!

Announcements

- Distribution list
 - Test message was sent out Monday night
 - 15 of you have already responded. Thank you!
 - If you haven't responded yet, please do so ASAP.
 - If you did not get it, let me know. We have to get you registered with the right address.
- Do you want to know the quiz results?
 - Class average:45.4/60
 - Equivalent to 75.3/100
 - Top score: 60
 - Quiz is 10% of the total.
- Reading assignments
 - CH23–9

Gauss' Law w/ more than one charge

- Let's consider several charges inside a closed surface.
- For each charge, Q_i, inside the chosen closed surface,

$$\oint \vec{E}_i \cdot d\vec{A} = \frac{Q_i}{\varepsilon_0}$$

What is \vec{E}_i ?

The electric field produced by Q_i alone!

• Since electric fields can be added vectorially, following the superposition principle, the total field **E** is equal to the sum of the fields due to each charge $\vec{E} = \sum \vec{E}_i$ and any external field. So What is Q_{encl} ?

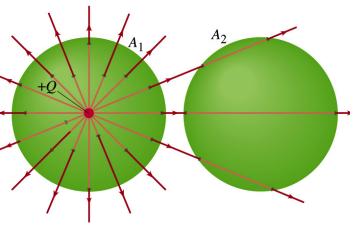
$$\oint \vec{E} \cdot d\vec{A} = \oint \left(\vec{E}_{ext} + \sum \vec{E}_i\right) \cdot d\vec{A} = \frac{\sum Q_i}{\varepsilon_0} = \frac{Q_{encl}}{\varepsilon_0}$$
The total enclosed charge!

The value of the flux depends on the charge enclosed in the surface!! → Gauss' law.

So what is Gauss' Law good for?

- Derivation of Gauss' law from Coulomb's law is only valid for <u>static electric charge</u>.
- Electric field can also be produced by changing magnetic fields.
 - Coulomb's law cannot describe this field while Gauss' law is still valid
- Gauss' law is more general than Coulomb's law.
 - Can be used to obtain electric field, forces or obtain charges

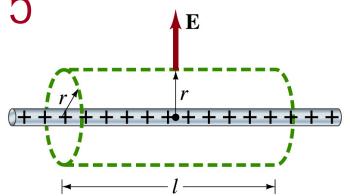
Gauss' Law: Any <u>differences</u> between the input and output flux of the electric field over any enclosed surface is due to the charge within that surface!!!



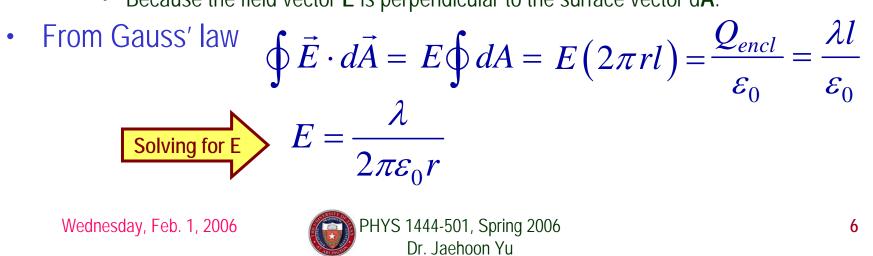
Example 22 – 2

Flux from Gauss' Law: Consider the two gaussian surfaces, A_1 and A_2 , shown in the figure. The only charge present is the charge +Q at the center of surface A_1 . What is the net flux through each surface A_1 and A_2 ?

- The surface A₁ encloses the charge +Q, so from Gauss' law we obtain the total net flux
- The surface A₂ the charge, +Q, is outside the surface, so the total net flux is 0.



 $\oint \vec{E} \cdot d\vec{A} = \frac{+\psi}{\varepsilon_0}$

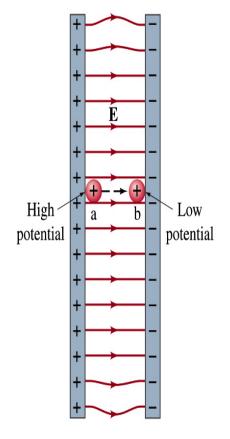

 $\oint \vec{E} \cdot d\vec{A} = \frac{0}{\varepsilon_0} = 0$

Example 22 – 5

Long uniform line of charge: A very long straight wire possesses a uniform positive charge per unit length, λ . Calculate the electric field at points near but outside the wire, far from the ends.

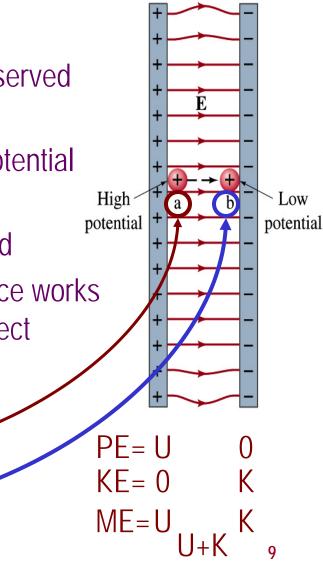
- Which direction do you think the field due to the charge on the wire is?
 - Radially outward from the wire, the direction of radial vector r.
- Due to cylindrical symmetry, the field is the same on the gaussian surface of a cylinder surrounding the wire.
 - The end surfaces do not contribute to the flux at all. Why?
 - Because the field vector **E** is perpendicular to the surface vector d**A**.

Electric Potential Energy


- Concept of energy is very useful solving mechanical problems
- Conservation of energy makes solving complex problems easier.
- When can the potential energy be defined?
 - Only for a conservative force.
 - The work done by a conservative force is independent of the path. What does it only depend on??
 - The difference between the initial and final positions
 - Can you give me an example of a conservative force?
 - Gravitational force
- Is the electrostatic force between two charges a conservative force?
 - Yes. Why?
 - The dependence of the force to the distance is identical to that of the gravitational force.
 - The only thing matters is the direct linear distance between the object not the path.

Electric Potential Energy

- How would you define the change in electric potential energy $U_b U_a$?
 - The potential gained by the charge as it moves from point a to point b.
 - The negative work done on the charge by the electric force to move it from a to b.
 - Let's consider an electric field between two parallel plates w/ equal but opposite charges
 - The field between the plates is uniform since the gap is small and the plates are infinitely long...
 - What happens when we place a small charge, +q, on a point at the positive plate and let go?
 - The electric force will accelerate the charge toward negative plate.
 - What kind of energy does the charged particle gain?
 - Kinetic energy



Electric Potential Energy

- What does this mean in terms of energies?
 - The electric force is a conservative force.
 - Thus, the mechanical energy (K+U) is conserved under this force.
 - The charged object has only the electric potential energy at the positive plate.
 - The electric potential energy decreases and
 - Turns into kinetic energy as the electric force works on the charged object and the charged object gains speed.
- Point of greatest potential energy for •
 - Positively charged object
 - Negatively charged object

Dr. Jaehoon Yu

Electric Potential

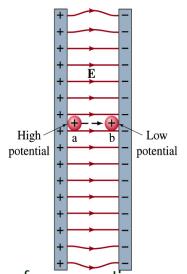
- How is the electric field defined?
 - Electric force per unit charge: F/q
- We can define electric potential (potential) as
 - The electric potential energy per unit charge
 - This is like the voltage of a battery...
- Electric potential is written with a symbol V
 - If a positive test charge q has potential energy U_a at a point *a*, the electric potential of the charge at that point is U_a

$$V_a = \frac{U_a}{q}$$

Electric Potential

- Since only the difference in potential energy is meaningful, only the potential difference between two points is measurable
- What happens when the electric force does "positive work"?
 - The charge gains kinetic energy
 - Electric potential energy of the charge decreases
- Thus the difference in potential energy is the same as the negative of the work, W_{ba} , done on the charge by the electric field to move the charge from point a to b.
- The potential difference V_{ba} is

$$V_{ba} = V_b - V_a = \frac{U_b - U_a}{q} = \frac{-W_{ba}}{q}$$


- Electric potential is independent of the test charge!!

A Few Things about Electric Potential

- What does the electric potential depend on?
 - Other charges that creates the field
 - What about the test charge? —
 - No, the electric potential is independent of the test charge •
 - Test charge gains potential energy by existing in the potential created by other charges
- Which plate is at a higher potential? ٠
 - Positive plate. Why?
 - Since positive charge has the greatest potential energy on it.
 - What happens to the positive charge if it is let go?
 - It moves from higher potential to lower potential •
 - How about a negative charge?
 - Its potential energy is higher on the negative plate. Thus, it moves from negative plate to positive. Potential difference is the same.
- The unit of the electric potential is Volt (V).
- From the definition, 1V = 1J/C. Wednesday, Feb. 1, 2006

PHYS 1444-501, Spring 2006 Dr. Jaehoon Yu

Zero point of electric potential can be chosen arbitrarily.

Often the ground, a conductor connected to Earth is zero.

Example 23 – 1

A negative charge: Suppose a negative charge, such as an electron, is placed at point *b* in the figure. If the electron is free to move, will its electric potential energy increase or decrease? How will the electric potential change?

- An electron placed at point *b* will move toward the positive plate since it was released at its highest potential energy point.
- It will gain kinetic energy as it moves toward left, decreasing its potential energy.
- The electron, however, moves from the point *b* at a lower potential to point *a* at a higher potential. $\Delta V = V_a V_b > 0$.
- This is because the potential is generated by the charges on the plates not by the electron.

Wednesday, Feb. 1, 2006

