PHYS 1444 – Section 501 Lecture #13

Wednesday, Mar. 8, 2006 Dr. Jaehoon Yu

- Analysis of RC Circuits
- Discharging of RC Circuits
- Application of RC Circuits
- Magnetism and Magnetic Field
- Electric Current and Magnetism
- Magnetic Forces on Electric Current

Today's homework is #7, due 7pm, Thursday, Mar. 23!!

Announcements

- Please bring back your exams to me by Monday, Mar. 20, if you didn't today
- Quiz on Monday, Mar. 20
 - Covers CH 25, 26 and part of 27
- Reminder for the reading assignments
 - CH26 5 and 26 6
- Spring break next week
 - Have a great break!

RC Circuits

- How does all this look like in graphs?
 - Charge and the current on the capacitor as a function of time

- From energy conservation (Kirchhoff's 2^{nd} rule), the emf ϵ must be equal to the voltage drop across the capacitor and the resister
 - $\varepsilon = IR + Q/C$
 - R includes all resistance in the circuit, including the internal resistance of the battery, *I* is the current in the circuit at any instant, and Q is the charge of the capacitor at that same instance.

Analysis of RC Circuits

- From the energy conservation, we obtain $\epsilon = IR + Q/C$
- Which ones are constant in the above equation?
 - $-\epsilon$, R and C are constant
 - -Q and *I* are functions of time
- How do we write the rate at which the charge is accumulated on the capacitor?
 - We can rewrite the above equation as $\varepsilon = R \frac{dQ}{dt} + \frac{1}{C}Q$
 - This equation can be solved by rearranging the terms as $\frac{dQ}{C\varepsilon - Q} = \frac{dt}{RC}$

Analysis of RC Circuits

- Now integrating from *t=0* when there was no charge on the capacitor to *t* when the capacitor is fully charged, we obtain
- $\int_0^Q \frac{dQ}{C\varepsilon Q} = \frac{1}{RC} \int_0^t dt$ \Rightarrow
- $-\ln(C\varepsilon Q)\Big|_{0}^{Q} = -\ln(C\varepsilon Q) (-\ln C\varepsilon) = \frac{t}{RC}\Big|_{0}^{r} = \frac{t}{RC}$
- So, we obtain $\ln\left(1-\frac{Q}{C\varepsilon}\right) = -\frac{t}{RC} \rightarrow 1-\frac{Q}{C\varepsilon} = e^{-t/RC}$
- Or $Q = C\varepsilon \left(1 e^{-t/RC}\right)$
- The potential difference across the capacitor is V=Q/C, so $V_C = \varepsilon (1-e^{-t/RC})$

Analysis of RC Circuits

- Since $Q = C \varepsilon \left(1 e^{-t/RC}\right)$ and $V_C = \varepsilon \left(1 e^{-t/RC}\right)$
- What can we see from the above equations?
 - Q and V_C increase from 0 at t=0 to maximum value Q_max=C ϵ and V_C= $\epsilon.$
- In how much time?
 - The quantity RC is called the time constant, τ , of the circuit
 - τ =RC, What is the unit? Sec.
 - What is the physical meaning?
 - The time required for the capacitor to reach (1-e⁻¹)=0.63 or 63% of the full charge
- The current is $I = \frac{dQ}{dt} = \frac{\varepsilon}{R}e^{-t/RC}$

Example 26 – 12

RC circuit, with emf. The capacitance in the circuit of the figure is $C=0.30\mu$ F, the total resistance is $20k\Omega$, and the battery emf is 12V. Determine (a) the time constant, (b) the maximum charge the capacitor could acquire, (c) the time it takes for the charge to reach 99% of this value, (d) the current I when the charge Q is half its maximum value, (e) the maximum current, and (f) the charge Q when, the current I is 0.20 its maximum value.

(a) Since $\tau = RC$ We obtain $\tau = 20 \times 10^3 \cdot 0.30 \times 10^{-6} = 6.0 \times 10^{-3} \sec$ (b) Maximum charge is $Q_{max} = C\varepsilon = 0.30 \times 10^{-6} \cdot 12 = 3.6 \times 10^{-6} C$ (c) Since $Q = C\varepsilon (1 - e^{-t/RC})$ For 99% we obtain $0.99C\varepsilon = C\varepsilon (1 - e^{-t/RC})$ $e^{-t/RC} = 0.01; -t/RC = -2 \ln 10; t = RC \cdot 2 \ln 10 = 4.6RC = 28 \times 10^{-3} \sec$ (d) Since $\varepsilon = IR + Q/C$ We obtain $I = (\varepsilon - Q/C)/R$ The current when Q is $0.5Q_{max}$ $I = (12 - 1.8 \times 10^{-6}/0.30 \times 10^{-6})/20 \times 10^3 = 3 \times 10^{-4} A$ (e) When is I maximum? when Q=0: $I = 12/20 \times 10^3 = 6 \times 10^{-4} A$ (f) What is Q when I=120mA? $Q = C(\varepsilon - IR) =$

Discharging RC Circuits

- When a capacitor is already charged, it is allowed to discharge through a resistance R.
 - When the switch S is closed, the voltage across the resistor at any instant equals that across the capacitor. Thus IR=Q/C.
 - The rate at which the charge leaves the capacitor equals the negative the current flows through the resistor
 - *I*= dQ/dt. Why negative?
 - Since the current is leaving the capacitor
 - Thus the voltage equation becomes a differential equation

Dr. Jaehoon Yu

$$-\frac{dQ}{dt}R = \frac{Q}{C}$$
Rearrange terms $\frac{dQ}{Q} = -\frac{dt}{RC}$
Wednesday, Mar. 8, 2006
PHYS 1444-501, Spring 2006

 $V_0 \stackrel{\perp}{=} C$

(t = 0)

(a)

Discharging RC Circuits

- Now, let's integrate from t=0 when the charge is Q_0 to t when the charge is $Q \int_{-\infty}^{Q} \frac{dQ}{dQ} = \int_{-\infty}^{t} \frac{dt}{dt}$

$$J_{Q_0} Q \qquad J_0 RC$$

- The result is $\ln Q\Big|_{Q_0}^Q = \ln \frac{Q}{Q_0} = -\frac{t}{RC}$
- Thus, we obtain

$$Q(t) = Q_0 e^{-t/RC}$$

– What does this tell you about the charge on the capacitor?

- It decreases exponentially w/ time and w/ time constant RC
- Just like the case of charging What is this? - The current is: $I = -\frac{dQ}{dt} = \frac{Q_0}{RC} e^{-t/RC}$ $I(t) = I_0 e^{-t/RC}$
 - The current also decreases exponentially w/ time w/ constant RC

Example 26 – 13

Discharging RC circuit. In the RC circuit shown in the figure the battery has fully charged the capacitor, so $Q_0 = C\epsilon$. Then at t=0, the $\ell = 20.0V$ switch is thrown from position a to b. The battery emf is 20.0V, and the capacitance C=1.02 μ F. The current *I* is observed to decrease to 0.50 of its initial value in 40μ s. (a) what is the value of R? (b) What is the value of Q, the charge on the capacitor, at t=0? (c) What is Q at t= 60μ s?

(a) Since the current reaches to 0.5 of its initial value in 40μ s, we can obtain $I(t) = I_0 e^{-t/RC}$ For 0.5 I_0 0.5 $I_0 = I_0 e^{-t/RC}$ Rearrange terms $-t/RC = \ln 0.5 = -\ln 2$ Solve for R $R = t/(C \ln 2) = 40 \times 10^{-6}/(1.02 \times 10^{-6} \cdot \ln 2) = 56.6\Omega$ (b) The value of Q at t=0 is

$$Q_0 = Q_{\text{max}} = C\varepsilon = 1.02 \times 10^{-6} \cdot 20.0 = 20.4 \,\mu C$$

(c) What do we need to know first for the value of Q at $t=60\mu$ s?

The RC time $\tau = RC = 56.6 \cdot 1.02 \times 10^{-6} = 57.7 \,\mu s$ Thus $Q(t = 60 \mu s) = Q_0 e^{-t/RC} = 20.4 \times 10^{-6} \cdot e^{-60 \mu s/57.7 \mu s} = 7.2 \mu C$ Wednesday, Mar. 8, 2006 PHYS 1444-501, Spring 2006 10 Dr. Jaehoon Yu

Application of RC Circuits

- What do you think the charging and discharging characteristics of RC circuits can be used for? $_{\mbox{$\Gamma$}}$
 - To produce voltage pulses at a regular frequency $\frac{1}{T}$
 - How?
 - The capacitor charges up to a particular voltage and discharges
 - A simple way of doing this is to use breakdown of voltage in a gas filled tube
 - The discharge occurs when the voltage breaks down at V_0
 - After the completion of discharge, the tube no longer conducts
 - Then the voltage is at V_0' and it starts charging up
 - How do you think the voltage as a function of time look?
 - » A sawtooth shape
 - Pace maker, intermittent windshield wiper, etc

Wednesday, Mar. 8, 2006

11

