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INTRODUCTION

The Standard Model of particle physics is in stupendous agreement with experi-
mental measurements; in some cases it has been tested to a precision of greater than
.1%. Why then expand our model? The reason, of course, is that the Standard Model
contains several nagging theoretical problems which cannot be solved without the in-
troduction of some new physics. Supersymmetry is, at present, many theorists’ favorite
candidate for such new physics.

The single aspect of the Standard Model which has not been verified experimen-
tally is the Higgs sector. The Standard Model without the Higgs boson is incomplete,
however, since it predicts massless fermions and gauge bosons. Furthermore, the elec-
troweak radiative corrections would be infinite and longitudinal gauge boson scattering
would grow with energy and violate unitarity at an energy scale around 3 TeV if there
were no Higgs boson.[1] The simplest mechanism to cure these defects is the introduc-
tion of a single SU(2)L doublet of Higgs bosons. When the neutral component of the
Higgs boson gets a vacuum expectation value, the SU(2)L × U(1)Y gauge symmetry
is broken, giving the W and Z gauge bosons their masses. The chiral symmetry for-
bidding fermion masses is broken at the same time allowing the fermions to become
massive. Furthermore, in the Standard Model, the coupling of the Higgs boson to gauge
bosons is just that required to cancel the infinities in electroweak radiative corrections
and to cancel the unitarity violation in the gauge boson scattering sector. What then
is the problem with this simple and economical picture?

The argument against the simplest version of the Standard Model with a single
Higgs boson is purely theoretical and arises when radiative corrections to the Higgs bo-
son mass are computed. The scalar potential for the Higgs boson, h, is given schemat-
ically by,

V ∼M2
h0h

2 + λh4. (2)

At one loop, the quartic self- interactions of the Higgs boson (proportional to λ) gen-
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erate a quadratically divergent contribution to the Higgs boson mass which must be
cancelled by the mass counterterm, δM2

h ,[2]

M2
h ∼M2

h0 +
λ

4π2
Λ2 + δM2

h . (3)

The scale Λ is a cutoff which, in the Standard Model with no new physics between the
electroweak scale and the Planck scale, must be of order the Planck scale. In order
for the Higgs boson to do its job of preventing unitarity violation in the scattering
of longitudinal gauge bosons, however, its mass must be less than around 800 GeV .[1]
This leads to an unsatisfactory situation. The large quadratic contribution to the Higgs
boson mass-squared, of O(1018GeV )2, must be cancelled by the counterterm δM2

h such
that the result is roughly less than (800 GeV )2. This requires a cancellation of one
part in 1016. This is of course formally possible, but regarded by most theorists as an
unacceptable fine tuning of parameters. Additionally, this cancellation must occur at
every order in perturbation theory and so the parameters must be fine tuned again and
again. The quadratic growth of the Higgs boson mass beyond tree level in perturbation
theory is one of the driving motivations behind the introduction of supersymmetry,
which we will see cures this problem. It is interesting that the loop corrections to
fermion masses do not exhibit this quadratic growth (and we therefore say that fermion
masses are “natural”). It is only when we attempt to understand electroweak symmetry
breaking by including a Higgs boson that we face the problem of quadratic divergences.

In these lectures, I discuss the theoretical motivation for supersymmetric theories
and introduce the minimal low energy effective supersymmetric theory, (MSSM). I
consider only the MSSM and its simplest grand unified extension here. Some of the
other possible low-energy SUSY models are summarized in Ref. [3]. The particles
and their interactions are examined in detail in the next sections and a grand unified
SUSY model presented which gives additional motivation for pursuing supersymmetric
theories.

Finally, I discuss indirect limits on the SUSY partners of ordinary matter coming
from precision measurements at LEP and direct production searches at the Tevatron
and discuss search strategies for SUSY at both future e+e− and hadron colliders. Only a
sampling of existing limits are given in order to demonstrate some of the general features
of these searches. Up- to- date limits on SUSY particle searches at hadron colliders[4]
and e+e− colliders[5] were given at the 1996 DPF meeting and can be used to map
out the allowed regions of SUSY parameter space. There exist numerous excellent
reviews of both the more formal aspects of supersymmetric model building [6, 7] and
the phenomenology of these models [8, 9] and the reader is referred to these for more
details. I present here a workmanlike approach designed primarily for experimental
graduate students.

WHAT IS SUSY?

Suppose we reconsider the one loop contributions to the Higgs boson mass in a
theory which contains both massive scalars, φ, and fermions, ψ, in addition to the Higgs
field, h. Then the Lagrangian is given by:

L ∼ −gFψψh− g2
Sh

2φ2 . (4)
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If we again calculate the one-loop contribution to M2
h we find[2]

M2
h ∼ M2

h0 +
g2

F

4π2

(

Λ2 +m2
F

)

− g2
S

4π2

(

Λ2 +m2
S

)

+logarithmic divergences + uninteresting terms . (5)

The relative minus sign between the fermion and scalar contributions to the Higgs boson
mass-squared is the well-known result of Fermi statistics. We see that if gS = gF the
terms which grow with Λ2 cancel and we are left with a well behaved contribution to
the Higgs boson mass so long as the fermion and scalar masses are not too different,[10]

M2
h ∼M2

h0 +
g2

F

4π2

(

m2
F −m2

S

)

. (6)

Attempts have been made to quantify “not too different”.[9] One can roughly assume
that the cancellation is unnatural if the mass splitting between the fermion and the
scalar is larger than about a TeV. Of course, in order for this cancellation to persist to
all orders in perturbation theory it must be the result of a symmetry. This symmetry
is supersymmetry.

Supersymmetry is a symmetry which relates particles of differing spin, (in the
above example, fermions and scalars). The particles are combined into a superfield ,
which contains fields differing by one-half unit of spin.[11] The simplest example,
the scalar superfield, contains a complex scalar, S, and a two- component Majorana
fermion, ψ. (A Majorana fermion, ψ, is one which is equal to its charge conjugate,
ψc = ψ. A familiar example is a Majorana neutrino.) The supersymmetry completely
specifies the allowed interactions. In this simple case, the Lagrangian is

L = −∂µS
∗∂µS − iψσµ∂µψ − 1

2
m(ψψ + ψψ)

−cSψψ − c∗S∗ψψ− | mS + cS2 |2, (7)

(where σ is a 2 × 2 Pauli matrix and c is an arbitrary coupling constant.) This La-
grangian is invariant (up to a total derivative) under transformations which take the
scalar into the fermion and vice versa. Since the scalar and fermion interactions have
the same coupling, the cancellation of quadratic divergences occurs automatically, as
in Eq. 5. One thing that is immediately obvious is that this Lagrangian contains both
a scalar and a fermion of equal mass . Supersymmetry connects particles of different
spin, but with all other characteristics the same. That is, they have the same quantum
numbers and the same mass.

• Particles in a superfield have the same masses and quantum numbers and differ
by 1/2 unit of spin in a theory with unbroken supersymmetry.

It is clear, then, that supersymmetry must be a broken symmetry. There is
no scalar particle, for example, with the mass and quantum numbers of the electron. In
fact, there are no candidate supersymmetric scalar partners for any of the fermions in
the experimentally observed spectrum. We will take a non-zero mass splitting between
the particles of a superfield as a signal for supersymmetry breaking.

Supersymmetric theories are easily constructed according to the rules of supersym-
metry. I present here a cookbook approach to constructing the minimal supersymmetric
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version of the Standard Model. The first step is to pick the particles in superfields.
There are two types of superfields relevant for our purposes:∗

1. Chiral Superfields: These consist of a complex scalar field, S, and a 2-component
Majorana fermion field, ψ.

2. MasslessVector Superfields: These consist of a massless gauge field with field
strength FA

µν and a 2-component Majorana fermion field, λA, termed a gaugino.
The index A is the gauge index.

The Particles of the MSSM

The MSSM respects the same SU(3)×SU(2)L×U(1) gauge symmetries as does the
Standard Model. The particles necessary to construct the supersymmetric version of
the Standard Model are shown in Tables 1 and 2 in terms of the superfields, (which are
denoted by the superscript “hat”). Since there are no candidates for supersymmetric
partners of the observed particles, we must double the entire spectrum, placing the
observed particles in superfields with new postulated superpartners. There are, of
course, quark and lepton superfields for all 3 generations and we have listed in Table 1
only the members of the first generation. The superfield Q̂ thus consists of an SU(2)L

doublet of quarks:

Q =

(

u
d

)

L

(8)

and their scalar partners which are also in an SU(2)L doublet,

Q̃ =

(

ũL

d̃L

)

. (9)

Similarly, the superfield Û c (D̂c) contains the right-handed up (down) anti-quark, uR

(dR), and its scalar partner, ũ∗R (d̃∗R). The scalar partners of the quarks are fancifully
called squarks. We see that each quark has 2 scalar partners, one corresponding to each
quark chirality. The leptons are contained in the SU(2)L doublet superfield L̂ which
contains the left-handed fermions,

L =

(

ν
e

)

L

(10)

and their scalar partners,

L̃ =

(

ν̃L

ẽL

)

. (11)

Finally, the right-handed anti-electron, eR, is contained in the superfield Êc and has a
scalar partner ẽ∗R. The scalar partners of the leptons are termed sleptons.

The SU(3)×SU(2)L×U(1) gauge fields all obtain Majorana fermion partners in a
SUSY model. The Ĝa superfield contains the gluons, ga, and their partners the gluinos,
g̃a; Ŵi contains the SU(2)L gauge bosons, Wi and their fermion partners, ω̃i (winos);
and B̂ contains the U(1) gauge field, B, and its fermion partner, b̃ (bino). The usual
notation is to denote the supersymmetric partner of a fermion or gauge field with the
same letter, but with a tilde over it.
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Table 1: Chiral Superfields of the MSSM

Superfield SU(3) SU(2)L U(1)Y Particle Content

Q̂ 3 2 1
6

(uL, dL), (ũL, d̃L)

Û c 3 1 −2
3

uR, ũ∗R
D̂c 3 1 1

3
dR, d̃∗R

L̂ 1 2 −1
2

(νL, eL), (ν̃L, ẽL)

Êc 1 1 1 eR, ẽ∗R
Ĥ1 1 2 −1

2
(H1, h̃1)

Ĥ2 1 2 1
2

(H2, h̃2)

Table 2: Vector Superfields of the MSSM

Superfield SU(3) SU(2)L U(1)Y Particle Content

Ĝa 8 1 0 g, g̃

Ŵ i 1 3 0 Wi, ω̃i

B̂ 1 1 0 B, b̃

One feature of Table 1 requires explanation. The Standard Model contains a single
SU(2)L doublet of scalar particles, dubbed the “Higgs doublet”. In the supersymmetric
extension of the Standard Model, this scalar doublet acquires a SUSY partner which
is an SU(2)L doublet of Majorana fermion fields, h̃1 (the Higgsinos), which contribute
to the triangle SU(2)L and U(1) gauge anomalies. Since the fermions of the Stan-
dard Model have exactly the right quantum numbers to cancel these anomalies, it
follows that the contribution from the fermionic partner of the Higgs doublet remains
uncancelled.[12] Since gauge theories cannot have anomalies, these contributions must
be cancelled somehow if the SUSY theory is to be sensible. The simplest way is to add a
second Higgs doublet with precisely the opposite U(1) quantum numbers from the first
Higgs doublet. In a SUSY Model, this second Higgs doublet will also have fermionic
partners, h̃2, and the contributions of the fermion partners of the two Higgs doublets
to gauge anomalies will precisely cancel each other, leaving an anomaly free theory.
It is easy to check that the fermions of Table 1 satisfy the conditions for anomaly
cancellation:

Tr(Y 3) = Tr(T 2
3LY ) = 0 . (12)

We will see later that 2 Higgs doublets are also required in order to give both the up
and down quarks masses in a SUSY theory. The requirement that there be at least 2
SU(2)L Higgs doublets is a feature of all models with weak scale supersymmetry.

• In general, supersymmetric extensions of the Standard Model have extended Higgs
sectors leading to a rich phenomenology of scalars.

∗The superfields also contain “auxiliary fields”, which are fields with no kinetic energy terms in the
Lagrangian.[11] These fields are not important for our purposes.
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The Interactions of the MSSM

Having specified the superfields of the theory, the next step is to construct the
supersymmetric Lagrangian.[13] There is very little freedom in the allowed interactions
between the ordinary particles and their supersymmetric partners. It is this feature of
a SUSY model which gives it predictive power (and makes it attractive to theorists!).
It is important to note here, however, that there is nothing to stop us from adding
more superfields to those shown in Tables 1 and 2 as long as we are careful to add
them in such a way that any additional contributions to gauge anomalies cancel among
themselves. Recent popular models add an additional gauge singlet superfield to the
spectrum, which has interesting phenomenological consequences.[14] The MSSM which
we concentrate on, however, contains only those fields given in the tables.

The supersymmetry associates each 2-component Majorana fermion with a com-
plex scalar. The massive fermions of the Standard Model are, however, Dirac fermions.
A Dirac fermion has 4 components which can be thought of as the left-and right-handed
chiral projections of the fermion state. It is straightforward to translate back and forth
between 2- and 4- component notation for the fermions and we will henceforth use
the more familiar 4- component notation when writing the fermion interactions.[6] The
fields of the MSSM all have canonical kinetic energies:†

LKE =
∑

i

{

(DµS
∗
i )(D

µSi) + iψiDψi

}

+
∑

A

{

−1

4
FA

µνF
µνA +

i

2
λADλA

}

, (13)

where D is the SU(3) × SU(2)L × U(1) gauge invariant derivative. The
∑

i is over all
the fermion fields of the Standard Model, ψi, and their scalar partners, Si, and also over
the 2 Higgs doublets with their fermion partners. The

∑

A is over the SU(3), SU(2)L

and U(1)Y gauge fields with their fermion partners, the gauginos.
The interactions between the chiral superfields of Table 1 and the gauginos and

the gauge fields of Table 2 are completely specified by the gauge symmetries and by
the supersymmetry, as are the quartic interactions of the scalars,

Lint = −
√

2
∑

i,A

gA

[

S∗
i T

AψiLλA + h.c.
]

− 1

2

∑

A

(

∑

i

gAS
∗
i T

ASi

)2

, (14)

where ψL ≡ 1
2
(1 − γ5)ψ. In Eq. 14, gA is the relevant gauge coupling constant and

we see that the interaction strengths are fixed in terms of these constants. There are

no adjustable parameters here. For example, the interaction between a quark, its
scalar partner, the squark, and the gluino is governed by the strong coupling constant,
gs. A complete set of Feynman rules for the minimal SUSY model described here
is given in the review by Haber and Kane.[6] A good rule of thumb is to take an
interaction involving Standard Model particles and replace two of the particles by their
SUSY partners to get an approximate strength for the interaction. (This naive picture
is, of course, altered by

√
2’s, mixing angles, etc.).

The only freedom in constructing the supersymmetric Lagrangian (once the su-
perfields and the gauge symmetries are chosen) is contained in a function called the

†Remember that both the right- and left- handed helicity state of a fermion has its own scalar partner.
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superpotential,W . The superpotential is a function of the chiral superfields of Table
1 only (it is not allowed to contain their complex congugates) and it contains terms
with 2 and 3 chiral superfields. Terms in the superpotential with more than 3 chiral
superfields would yield non-renormalizable interactions in the Lagrangian. The super-
potential also is not allowed to contain derivative interactions and we say that it is an
analytic function. From the superpotential can be found both the scalar potential and
the Yukawa interactions of the fermions with the scalars:

LW = −
∑

i

| ∂W
∂zi

|2 −1

2

∑

ij

[

ψiL

∂2W

∂zi∂zj
ψj + h.c.

]

, (15)

where z is a chiral superfield. This form of the Lagrangian is dictated by the super-
symmetry and by the requirement that it be renormalizable. An explicit derivation of
Eq. 15 can be found in Ref. [11]. To obtain the interactions, we take the derivatives
of W with respect to the superfields, z, and then evaluate the result in terms of the
scalar component of z.

The usual approach is to write the most general SU(3)×SU(2)L×U(1)Y invariant
superpotential with arbitrary coefficients for the interactions,

W = εijµĤ
i
1Ĥ

j
2 + εij

[

λLĤ
i
1L̂

cjÊc + λDĤ
i
1Q̂

jD̂c + λUĤ
j
2Q̂

iÛ c
]

+εij

[

λ1L̂
iL̂jÊc + λ2L̂

iQ̂jD̂c
]

+ λ3Û
cD̂cD̂c, (16)

(where i, j are SU(2) indices). In principle, a bi-linear term εijL̂
iĤj

2 can also be included

in the superpotential. It is possible, however, to rotate the lepton field, L̂, such that
this term vanishes so we will ignore it. We have written the superpotential in terms of
the fields of the first generation. In principle, the λi could all be matrices which mix
the interactions of the 3 generations.

The µĤ1Ĥ2 term in the superpotential gives mass terms for the Higgs bosons when
we apply | ∂W/∂z |2 and µ is often called the Higgs mass parameter. We shall see later
that the physics is very sensitive to the sign of µ. The terms in the square brackets
proportional to λL, λD, and λU give the usual Yukawa interactions of the fermions with
the Higgs bosons from the term ψi(∂

2W/∂zi∂zj)ψj . Hence these coefficients are deter-
mined in terms of the fermion masses and the vacuum expectation values of the neutral
members of the scalar components of the Higgs doublets and are not free parameters
at all.

The Lagrangian as we have written it cannot, however, be the whole story as all
the particles (fermions, scalars, gauge fields) are massless at this point.

R Parity

The terms in the second line of Eq. 16 (proportional to λ1, λ2 and λ3) are a
problem. They contribute to lepton and baryon number violating interactions and
can mediate proton decay at tree level through the exchange of the scalar partner
of the down quark. If the SUSY partners of the Standard Model particles have
masses on the TeV scale, then these interactions are severely restricted by experimental
measurements.[13, 15]

There are several possible approaches to the problem of the lepton and baryon
number violating interactions. The first is simply to make the coefficients, λ1, λ2, and

7



λ3 small enough to avoid experimental limits.[16, 17] This artificial tuning of parameters
is regarded as unacceptable by many theorists, but is certainly allowed experimentally.
Another tactic is to make either the lepton number violating interactions, λ1 and λ2,
or the baryon number violating interaction, λ3, zero, (while allowing the others to be
non-zero) which would forbid proton decay. There is, however, not much theoretical
motivation for this approach.

The usual strategy is to require that all of these undesirable lepton and baryon
number violating terms be forbidden by a symmetry. (If they are forbidden by a sym-
metry, they will not re-appear at higher orders of perturbation theory.) The symmetry
which does the job is called R parity.[18] R parity can be defined as a multiplicative
quantum number such that all particles of the Standard Model have R parity +1, while
their SUSY partners have R parity -1. R parity can also be defined as,

R ≡ (−1)3(B−L)+s , (17)

for a particle of spin s. It is then obvious that such a symmetry forbids the lepton and
baryon number violating terms of Eq. 16. It is worth noting that in the Standard Model,
the problem of baryon and lepton number violating interactions does not arise, since
these interactions are forbidden by the gauge symmetries to contribute to dimension-
4 operators and first arise in dimension- 6 operators which are suppressed by factors of
some heavy mass scale.

The assumption of R parity conservation has profound experimental consequences
which go beyond the details of a specific model. Because R parity is a multiplicative
quantum number, it implies that the number of SUSY partners in a given interaction
is always conserved modulo 2.

• SUSY partners can only be pair produced from Standard Model particles.

Furthermore, a SUSY particle will decay in a chain until the lightest SUSY particle is
produced (such a decay is called a cascade decay). This lightest SUSY particle, called
the LSP, must be absolutely stable when R parity is conserved.

• A theory with R parity conservation will have a lightest SUSY particle (LSP)
which is stable.

The LSP must be neutral since there are stringent cosmological bounds on light charged
or colored particles which are stable.[19, 20] Hence the LSP is stable and neutral and
is not seen in a detector (much like a neutrino) since it interacts only by the exchange
of a heavy virtual SUSY particle.

• The LSP will interact very weakly with ordinary matter.

• A generic signal for R parity conserving SUSY theories is missing transverse
energy from the non-observed LSP.

In theories without R parity conservation, there will not be a stable LSP, and the
lightest SUSY particle will decay into ordinary particles (possibly within the detec-
tor). Missing transverse energy will no longer be a robust signature for SUSY particle
production.[21]
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Supersymmetry Breaking

The mechanism of supersymmetry breaking is not well understood. At this point
we have constructed a SUSY theory containing all of the Standard Model particles,
but the supersymmetry remains unbroken and the particles and their SUSY partners
are massless. This is clearly unacceptable. It is typically assumed that the SUSY
breaking occurs at a high scale, say Mpl, and perhaps results from some complete theory
encompassing gravity. At the moment the usual approach is to assume that the MSSM,
which is the theory at the electroweak scale, is an effective low energy theory.[22] The
supersymmetry breaking is implemented by including explicit “soft” mass terms for
the scalar members of the chiral multiplets and for the gaugino members of the vector
supermultiplets in the Lagrangian. These interactions are termed soft because they
do not re-introduce the quadratic divergences which motivated the introduction of the
supersymmetry in the first place. The dimension of soft operators in the Lagrangian
must be 3 or less, which means that the possible soft operators are mass terms, bi-linear
mixing terms (“B” terms), and tri-linear scalar mixing terms (“ A terms”). The origin
of these supersymmetry breaking terms is left unspecified. The complete set of soft
SUSY breaking terms (which respect R parity and the SU(3) × SU(2)L × U(1) gauge
symmetry) for the first generation is given by the Lagrangian:[13, 23]

−Lsoft = m2
1 | H1 |2 +m2

2 | H2 |2 −Bµεij(H i
1H

j
2 + h.c.) + M̃2

Q(ũ∗LũL + d̃∗Ld̃L)

+M̃2
u ũ

∗
RũR + M̃2

d d̃
∗
Rd̃R + M̃2

L(ẽ∗LẽL + ν̃∗Lν̃L) + M̃2
e ẽ

∗
RẽR

+
1

2

[

M3g̃g̃ +M2ω̃iω̃i +M1b̃b̃
]

+
g√

2MW

εij

[

Md

cos β
AdH

i
1Q̃

j d̃∗R

+
Mu

sin β
AuH

j
2Q̃

iũ∗R +
Me

cos β
AeH

i
1L̃

j ẽ∗R + h.c.
]

. (18)

This Lagrangian has arbitrary masses for the scalars and gauginos and also arbitrary tri-
linear and bi-linear mixing terms. The scalar and gaugino mass terms have the desired
effect of breaking the degeneracy between the particles and their SUSY partners. The
tri-linear A-terms have been defined with an explicit factor of mass and we will see
later that they affect primarily the particles of the third generation.‡ When the Ai

terms are non-zero, the scalar partners of the left- and right-handed fermions can mix
when the Higgs bosons get vacuum expectation values and so they are no longer mass
eigenstates. The B term mixes the scalar components of the 2 Higgs doublets.

The philosophy is to add all of the mass and mixing terms which are allowed by
the gauge symmetries. To further complicate matters, all of the mass and interaction
terms of Eq. 18 may be matrices involving all three generations. Lsoft has clearly
broken the supersymmetry since the SUSY partners of the ordinary particles have
been given arbitrary masses. This has come at the tremendous expense, however, of
introducing a large number of unknown parameters (more than 50!). It is one of the
wonderful features of supersymmetry that even with all these new parameters, the
theory is still able to make some definitive predictions. This is, of course, because the
gauge interactions of the SUSY particles are completely fixed. What is really needed,
however, is a theory of how the soft SUSY breaking terms arise in order to reduce the
parameter space.

‡We have also included an angle β in the normalization of the A terms. The factor β is related to the
vacuum expectation values of the neutral components of the Higgs fields and is defined in the next
section. The normalization is, of course, arbitrary.
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We have now constructed the Lagrangian describing a softly broken supersym-
metric theory which is assumed to be the effective theory at the weak scale. A more
complete theory would predict the soft SUSY breaking terms. In the next section we
will examine how the electroweak symmetry is broken in this model and study the mass
spectrum and interactions of the new particles.

The Higgs Sector and Electroweak Symmetry Breaking

The Higgs sector of the MSSM is very similar to that of a general 2 Higgs doublet
model.[24] The scalar potential involving the Higgs bosons is

VH =
(

| µ |2 +m2
1

)

| H1 |2 +
(

| µ |2 +m2
2

)

| H2 |2 −µBεij
(

H i
1H

j
2 + h.c.

)

+
g2 + g′2

8

(

| H1 |2 − | H2 |2
)2

+
1

2
g2 | H∗

1H2 |2 . (19)

The Higgs potential of the SUSY model can be seen to depend on 3 independent
parameters,

| µ |2 +m2
1,

| µ |2 +m2
2,

µB , (20)

where B is a new mass parameter. This is in contrast to the general 2 Higgs doublet
model where there are 6 arbitrary coupling constants (and a phase) in the potential.
From Eq. 14, it is clear that the quartic couplings are fixed in terms of the gauge
couplings and so they are not free parameters. This leaves only the mass terms of Eq.
20 unspecified. Note that VH automatically conserves CP since any complex phase in
µB can be absorbed into the definitions of the Higgs fields.

Clearly, if µB = 0 then all the terms in the potential are positive and the minimum
of the potential occurs with V = 0 and 〈H0

1 〉 = 〈H0
2〉 = 0, leaving the electroweak sym-

metry unbroken.§ Hence all 3 parameters must be non-zero in order for the electroweak
symmetry to be broken. ¶

In order for the electroweak symmetry to be broken and for the potential to be
stable at large values of the fields, the parameters must satisfy the relations,

(µB)2 >
(

| µ |2 +m2
1

)(

| µ |2 +m2
2

)

| µ |2 +
m2

1 +m2
2

2
> | µB | . (21)

We will assume that these conditions are met. The symmetry is broken when the
neutral components of the Higgs doublets get vacuum expectation values,‖

〈H0
1 〉 ≡ v1

〈H0
2 〉 ≡ v2 . (22)

§It also leaves the supersymmetry unbroken, since 〈V 〉 > 0 is required in order for the supersymmetry
to be broken.[25]
¶We assume that the parameters are arranged in such a way that the scalar partners of the quarks
and leptons do not obtain vacuum expectation values. Such vacuum expectation values would sponta-
neously break the SU(3) color gauge symmetry or lepton number. This requirement gives a restriction
on Ai/m̃, where m̃ is a generic squark or slepton mass.
‖Our conventions for factors of 2 in the Higgs sector, and for the definition of the sign(µ), are those
of Ref. [26].
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By redefining the Higgs fields, we can always choose v1 and v2 positive.

0.0 200.0 400.0 600.0 800.0 1000.0
MA (GeV)

60.0

80.0

100.0

120.0

140.0

M
h 

(G
eV

)
Mh in SUSY Model

MS=1 TeV

tan β = 1.5 

tan β = 30 

Figure 1: Mass of the lightest neutral Higgs boson as a function of the pseudoscalar
mass, MA, and tanβ. This figure includes radiative corrections to the Higgs mass[28],
assumes a common scalar mass of 1 TeV , and neglects mixing effects, (Ai = µ = 0).

When the electroweak symmetry is broken, the W gauge boson gets a mass which
is fixed by v1 and v2,

M2
W =

g2

2
(v2

1 + v2
2) . (23)

Before the symmetry was broken, the 2 complex SU(2)L Higgs doublets had 8 degrees
of freedom. Three of these were absorbed to give the W and Z gauge bosons their
masses, leaving 5 physical degrees of freedom. There is now a charged Higgs boson,
H±, a CP -odd neutral Higgs boson, A, and 2 CP-even neutral Higgs bosons, h and
H . After fixing v2

1 + v2
2 such that the W gets the correct mass, the Higgs sector is then

described by 2 additional parameters which can be chosen however you like. The usual
choice is

tanβ ≡ v2

v1
(24)
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and MA, the mass of the pseudoscalar Higgs boson. Once these two parameters are
given, then the masses of the remaining Higgs bosons can be calculated in terms of MA

and tan β. Note that we can chose 0 ≤ β ≤ π
2

since we have chosen v1, v2 > 0.
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m
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Figure 2: Maximum value of the lightest Higgs boson mass as a function of the squark
mass including radiative corrections.[28] (We have assumed degenerate squarks and set
the mixing parameters Ai = µ = 0.)

It is straightforward to find the physical Higgs bosons and their masses in terms of
the parameters of Eq. 19. Details can be found in Ref. [26]. The neutral Higgs masses
are found by diagonalizing the 2 × 2 Higgs mass matrix and by convention, h is taken
to be the lighter of the neutral Higgs. The pseudoscalar mass is given by,

M2
A =

2 | µB |
sin 2β

, (25)

and the charged scalar mass is,

M2
H± = M2

W +M2
A . (26)

We see that at tree level[27], Eq. 19 gives important predictions about the relative

12



masses of the Higgs bosons,

MH+ > MW

MH > MZ

Mh < MA

Mh < MZ | cos 2β | . (27)

These relations yield the desirable prediction that the lightest neutral Higgs boson
is lighter than the Z boson and so must be observable at LEPII. Unfortunately (for
experimentalists at least!) it was realized several years ago that loop corrections to the
relations of Eq. 27 are large. In fact the corrections to M2

h grow like GFM
4
T and receive

contributions from loops with both top quarks and squarks. In a model with unbroken
supersymmetry, these contributions would cancel. Since the supersymmetry has been
broken by splitting the masses of the fermions and their scalar partners, the neutral
Higgs boson masses become at one- loop,[28]

M2
h,H =

1

2

{

M2
A+M2

Z+
εh

sin2 β
±
[(

M2
A−M2

Z) cos 2β+
εh

sin2 β

)2

+
(

M2
A+M2

Z

)2

sin2 2β
]1/2}

(28)
where εh is the contribution of the one-loop corrections,

εh ≡ 3GF√
2π2

M4
T log

(

m̃2

M2
T

)

. (29)

We have assumed that all of the squarks have equal masses, m̃, and have neglected
the smaller effects from the mixing parameters, Ai and µ. In Fig. 1, we show the
lightest Higgs boson mass as a function of the assumed common squark mass,m̃, and
for two values of tanβ. For tanβ > 1, the mass eigenvalues increase monotonically
with increasing MA and give an upper bound to the mass of the lightest Higgs boson,

M2
h < M2

Z cos2 2β + εh . (30)

The corrections from εh are always positive and increase the mass of the lightest neutral
Higgs boson with increasing top quark mass. From Fig. 1, we see that Mh obtains its
maximal value for rather modest values of the pseudoscalar mass, MA > 300 GeV . The
radiative corrections to the charged Higgs mass-squared are proportional to M2

T and so
are much smaller than the corrections to the neutral masses.

There are many sophisticated analyses[28] which include a variety of two-loop
effects, renormalization group effects, etc., but the important point is that for given
values of tan β and the squark masses, there is an upper bound on the lightest neutral
Higgs boson mass. The maximum value of the lightest Higgs mass is shown in Fig. 2
and we see that there is still a light Higgs boson even when radiative corrections are
included.∗∗ For large values of tan β the limit is relatively insensitive to the value of
tan β and with a squark mass less than about 1 TeV , the upper limit on the Higgs
mass is about 110 GeV . Different approaches can raise this limit slightly to around
130 GeV .

∗∗The leading logarithmic corrections are included in Fig. 2 and lower the result slightly from that
obtained using Eq. 28.
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Figure 3: Coupling of the lightest Higgs boson to charge −1/3 quarks including radiative
corrections [28] in terms of the couplings defined in Eq. 32. The value Cbbh = 1
corresponds to the Standard Model coupling of the Higgs boson to charge −1/3 quarks.

• The minimal SUSY model predicts a neutral Higgs boson with a mass less than
around 130 GeV .

Such a mass scale will be accessible at LEPII or the LHC and provides a definitive test
of the MSSM.

In a more complicated SUSY model with a richer Higgs structure, this bound
will, of course, be changed. However, the requirement that the Higgs self coupling
remain perturbative up to the Planck scale gives an upper bound on the lightest SUSY
Higgs boson of around 150 GeV in all models.[29] This is a very strong statement. It
implies that either there is a relatively light Higgs boson (which would be accessible
experimentally at LEPII or the LHC) or else there is some new physics between the
weak scale and the Planck scale which causes the Higgs couplings to become non-
perturbative.

The Higgs boson couplings to fermions are dictated by the gauge invariance of
the superpotential and at lowest order are completely specified in terms of the two
parameters, MA and tanβ. From Eq. 16, we see that the charge 2/3 quarks get their
masses entirely from v2, while the charge −1/3 quarks receive their masses from v1.
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This is a consequence of the U(1) hypercharge assignments for H1 and H2 given in
Table 1. In the Standard Model, it is possible to give both the up and down quarks
mass using a single Higgs doublet. This is because in the Standard Model the up quarks
can get their masses from the charge conjugate of the Higgs doublet. Terms involving
the charge conjugates of the superfields are not allowed in SUSY models, however, and
so a second Higgs doublet with opposite U(1) hypercharge from the first Higgs doublet
is necessary in order to give the up quarks mass. Requiring that the fermions have
their observed masses fixes the couplings in the superpotential of Eq. 16,[30]

λD =
gMd√

2MW cosβ

λU =
gMu√

2MW sin β

λL =
gMl√

2MW cosβ
, (31)

where g is the SU(2)L gauge coupling, g2 = 4
√

2GFM
2
W . We see that the only free

parameter in the superpotential now is the Higgs mass parameter, µ, (along with the
angle β in the λi couplings).

It is convenient to write the couplings for the neutral Higgs boson to the fermions
in terms of the Standard Model Higgs couplings,

L = − gmi

2MW

[

Cffhf ifih + CffHf ifiH + CffAf iγ5fiA
]

, (32)

where Cffh is 1 for a Standard Model Higgs boson. The Cffh are given in Table 3
and plotted in Figs. 3 and 4 as a function of MA. We see that for small MA and
large tanβ, the couplings of the neutral Higgs boson to fermions can be significantly
different from the Standard Model couplings; the b-quark coupling becomes enhanced,
while the t-quark coupling is suppressed. It is obvious from Figs. 3 and 4 that when
MA becomes large the Higgs-fermion couplings approach their standard model values,
Cffh → 1. In fact even for MA ∼ 300 GeV , the Higgs-fermion couplings are very close
to their Standard Model values.

Table 3: Higgs Boson Couplings to fermions

f Cffh CffH CffA

u cos α
sinβ

sinα
sinβ

cot β

d − sin α
cos β

cos α
cos β

tanβ

The Higgs boson couplings to gauge bosons are fixed by the SU(2)L ×U(1) gauge
invariance. Some of the phenomenologically important couplings are:

ZµZνh :
igMZ

cos θW
sin(β − α)gµν

ZµZνH :
igMZ

cos θW
cos(β − α)gµν

W µW νh : igMW sin(β − α)gµν
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Figure 4: Coupling of the lightest Higgs boson to charge 2/3 quarks including radiative
corrections [28] in terms of the couplings defined in Eq. 32. The value Ctth = 1 yields
the Standard Model coupling of the Higgs boson to charge 2/3 quarks.

W µW νH : igMW cos(β − α)gµν

Zµh(p)A(p′) :
g cos(β − α)

2 cos θW

(p+ p′)µ

ZµH(p)A(p′) : −g sin(β − α)

2 cos θW
(p+ p′)µ . (33)

We see that the couplings of the Higgs bosons to the gauge bosons all depend on the
same angular factor, β −α. The pseudoscalar, A, has no tree level coupling to pairs of
gauge bosons. The angle β is a free parameter while the neutral Higgs mixing angle, α,
which enters into many of the couplings, can be found in terms of the physical masses:

tan 2α =
(M2

A +M2
Z) sin 2β

(M2
A −M2

Z) cos 2β + εh/ sin2 β
. (34)

With our conventions, −π
2
≤ α ≤ 0. It is clear that the couplings of the SUSY Higgs to

gauge bosons are always suppressed relative to those of the Standard Model. A complete
set of couplings for the Higgs bosons (including the charged and pseudoscalar Higgs) at
tree level can be found in Ref. [26]. These couplings completely determine the decay
modes of the SUSY Higgs bosons and their experimental signatures. The important
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Figure 5: Total SUSY Higgs boson decay widths including two-loop radiative correc-
tions as a function of the Higgs masses. The curve for the lightest Higgs boson is cut
off at the maximum Mh. The program HDECAY [32] was used to obtain this plot.

point is that (at lowest order) all of the couplings are completely determined in terms
of MA and tan β. When radiative corrections are included there is a dependence on the
squark masses and the mixing parameters of Eq. 18. This dependence is explored in
detail in Ref. [31].

It is an important feature of the MSSM that for large MA, the Higgs sector looks
like that of the Standard Model. As MA → ∞, the masses of the charged Higgs bosons,
H±, and the heavier neutral Higgs, H , also become large leaving only the lighter Higgs
boson, h, in the spectrum. In this limit, the couplings of the lighter Higgs boson, h, to
fermions and gauge bosons take on their Standard Model values. We have,

sin(β − α) → 1 for MA → ∞
cos(β − α) → 0 . (35)

From Eq. 33, we see that the heavier Higgs boson, H , decouples from the gauge bosons
in the heavy MA limit, while the lighter Higgs boson, h, has Standard Model couplings.
Figs. 3 and 4 demonstrate that the Standard Model limit is also rapidly approached in
the fermion-Higgs couplings for MA > 300 GeV . In the limit of large MA, it will thus
be exceedingly difficult to differentiate a SUSY Higgs sector from the Standard Model
Higgs boson.

• The SUSY Higgs sector with largeMA looks like the Standard Model Higgs sector.
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The total width of the Higgs boson depends sensitively on tanβ and is illustrated
in Fig. 5 for tanβ = 2.[32] We see that the lightest Higgs boson has a width Γh ∼
10 − 100 MeV , while the heavier Higgs boson has a width ΓH ∼ .1 − 1 GeV , which
is considerably narrower than the width of the Standard Model Higgs boson with the
same mass. (The curve for the lighter Higgs boson is cut off at the kinematic upper
limit.) The pseudoscalar, A, is also narrower than a Standard Model Higgs boson with
the same mass.

The Squark and Slepton Sector

We turn now to a discussion of the scalar partners of the quarks and leptons. The
left-handed SU(2)L quark doublet has scalar partners,

Q̃ =

(

ũL

d̃L

)

. (36)

The right-handed quarks also have scalar partners, ũR and d̃R. The L and R subscripts
denote which helicity quark the scalars are partners of– they are for identification

purposes only. These are ordinary complex scalars. Before SUSY is broken the
fermions and scalars have the same masses and this mass degeneracy is split by the soft
mass terms of Eq. 18. The tri-linear A terms allow the scalar partners of the left- and
right-handed fermions to mix to form the mass eigenstates. In the top squark sector,
the mixing between the scalar partners of the left- and right handed top (the stops),
t̃L and t̃R, is given by

M2
t̃ =

(

M̃2
Q +M2

T +M2
Z(1

2
− 2

3
sin2 θW ) cos 2β MT (AT + µ cotβ)

MT (AT + µ cotβ) M̃2
U +M2

T + 2
3
M2

Z sin2 θW cos 2β

)

.

(37)
For the scalars associated with the lighter quarks, the mixing effects will be negligible,
since the mixing is proportional to the quark mass, (except if tanβ >> 1, when b̃L− b̃R
mixing may be large).

From Eq. 37, we see that there are two important cases to consider. If the soft
breaking occurs at a large scale, much greater than MZ , MT , and AT , then all the
soft masses will be approximately equal, and we will have 12 degenerate squarks with
mass m̃ ∼ M̃Q ∼ M̃U ∼ M̃D. On the other hand, if the soft masses and the tri-linear
mixing term, AT , are on the order of the electroweak scale, then mixing effects become
important.

If mixing effects are large, then one of the stop squarks will become the lightest
squark, since the mixing effects are proportional to the relevant quark masses and
hence will be largest in this sector. The case where the lightest squark is the stop is
particularly interesting phenomenologically, and we discuss it in the section on squark
mass limits.[33] In Fig. 6, we show the stop squark masses for M̃Q = M̃t = M̃b ≡ m̃
and for several values of tanβ. Of course the mixing effects cannot be too large, or the
stop squark mass-squared will be driven negative, leading to a breaking of the color
SU(3) gauge symmetry. Typically, the requirement that the correct vacuum be chosen
leads to a restriction on the mixing parameter on the order of | AT |< m̃.[7]

The couplings of the squarks to gauge bosons are completely fixed by gauge in-
variance, with no free parameters. A few examples of the couplings are:

γµ q̃L,R(p) q̃∗L,R(p′) : −ieQq(p+ p′)µ
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Figure 6: Stop squark masses for large mixing parameters, AT = µ = 200 GeV , and
for tan β = 2 and tan β = 30. M ≡ M̃Q = M̃u are the squark mass parameters of Eq.
37.

W µ− ũL(p) d̃∗L(p′) : − ig√
2
(p+ p′)µ

Zµ q̃L,R(p) q̃∗L,R(p′) : − ig

cos θW

[

T3 −Qq sin2 θW

]

(p+ p′)µ , (38)

where T3 and Qq are the quantum numbers of the corresponding quark. The strength of
the interactions are clearly given by the relevant gauge coupling constants. A complete
set of Feynman rules can be found in Ref. [6]

The mixing in the slepton sector is analogous to that in the squark sector and we
will not pursue it further. From Table 1, we see that the scalar partner of the νL, ν̃L,
has the same gauge quantum numbers as the H0

2 Higgs boson. It is possible to give
ν̃L a vacuum expectation value and use it to break the electroweak symmetry. Such a
vacuum expectation value would break lepton number (and R parity) thereby giving
the neutrinos a mass and so its magnitude is severely restricted. [17]
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The Chargino Sector

There are two charge 1, spin- 1
2

Majorana fermions; ω̃±, the fermion partners of

the W± bosons, and h̃±, the charged fermion partners of the Higgs boson, termed the
Higgsinos. The physical mass states, χ̃±

1,2, are linear combinations formed by diago-

nalizing the mass matrix and are usually called charginos. In the ω̃± − h̃± basis the
chargino mass matrix is,

Mχ̃± =

(

M2

√
2MW sin β√

2MW cos β −µ

)

. (39)

The physics is extremely sensitive to M2/µ. The mass eigenstates are then,

M2
χ̃±

1,2

=
1

2

{

M2
2 +2M2

W +µ2∓
[

(M2
2−µ2)2+4M4

W cos2 2β+4M2
W (M2

2 +µ2−2M2µ sin2 β
]1/2}

.

(40)
By convention Mχ̃±

1
is the lighter chargino.

The Neutralino Sector

In the neutral fermion sector, the neutral fermion partners of the B and W 3 gauge
bosons, b̃ and ω̃3, can mix with the neutral fermion partners of the Higgs bosons, h̃0

1, h̃
0
2.

Hence the physical states, χ̃0
i , are found by diagonalizing the 4 × 4 mass matrix,

Mχ̃0
i

=











M1 0 −MZ cosβ sin θW MZ sin β sin θW

0 M2 MZ cosβ cos θW −MZ sin β cos θW

−MZ cosβ sin θW MZ cosβ sin θW 0 µ
MZ sin β sin θW −MZ sin β cos θW µ 0











(41)
where θW is the electroweak mixing angle and we work in the b̃, ω̃3, h̃0

1, h̃
0
2 basis. The

physical masses can be defined to be positive and by convention, Mχ̃0
1
< Mχ̃0

2
< Mχ̃0

3
<

Mχ̃0
4
. In general, the mass eigenstates do not correspond to a photino, (a fermion

partner of the photon), or a zino, (a fermion partner of the Z), but are complicated
mixtures of the states. The photino is only a mass eigenstate if M1 = M2. Physics
involving the neutralinos therefore depends on M1, M2, µ, and tanβ. The lightest
neutralino, χ̃0

1, is usually assumed to be the LSP.

WHY DO WE NEED SUSY?

Having introduced the MSSM as an effective theory at the electroweak scale and
briefly discussed the various new particles and interactions of the model, I turn now to
a discussion of the reasons for constructing a SUSY theory in the first place. We have
already discussed the cancellation of the quadratic divergences, which is automatic in
a supersymmetric model. There are, however, many other reasons why theorists are
excited about supersymmetry. Theorists will often state that the mathematics of a
supersymmetric model is beautiful . However, in my mind, the beauty of supersym-
metry is largely obscured by the ugliness of the SUSY breaking sector which we have
introduced, and it is therefore essential to have a solid motivation for studying SUSY
theories.
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Coupling constants run!

In a gauge theory, coupling constants scale with energy according to the relevant
β-function. Hence, having measured a coupling constant at one energy scale, its value
at any other energy can be predicted. At one loop,

1

αi(Q)
=

1

αi(M)
+

bi
2π

log
(

M

Q

)

. (42)

In the Standard (non-supersymmetric) Model, the coefficients bi are given by,

b1 =
4

3
Ng +

NH

10

b2 = −22

3
+

4

3
Ng +

NH

6

b3 = −11 +
4

3
Ng , (43)

where Ng = 3 is the number of generations and NH = 1 is the number of Higgs doublets.
The evolution of the coupling constants is seen to be sensitive to the particle content of
the theory. We can take M = MZ in Eq. 42, input the measured values of the coupling
constants at the Z-pole and evolve the couplings to high energy. The result is shown
in Fig. 7. There is obviously no meeting of the coupling constants at high energy.

If the theory is supersymmetric, then the spectrum is different and the new parti-
cles contribute to the evolution of the coupling constants. In this case we have,[34]

b1 = 2Ng +
3

10
NH

b2 = −6 + 2Ng +
Nh

2
b3 = −9 + 2Ng . (44)

Because a SUSY model of necessity contains two Higgs doublets, we have NH = 2. If
we assume that the mass of all the SUSY particles is around 1 TeV , then the coupling
constants scale as shown in Fig. 8. We see that the coupling constants meet at a scale
around 1016 GeV.[13, 35, 36] This meeting of the coupling constants is a necessary
feature of a Grand Unified Theory (GUT).

• SUSY theories can be naturally incorporated into Grand Unified Theories.

There are many variations on this theme including two loop beta functions, effects from
passing through SUSY particle thresholds, etc., but they all allow us to take the picture
of SUSY as resulting from a GUT theory seriously.[36, 37]

SUSY GUTS

The observation that the measured coupling constants tend to meet at a point
when evolved to high energy assuming the β-function of a low energy SUSY model has
led to widespread acceptance of a standard SUSY GUT model. We assume that the
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Figure 7: Evolution of the gauge coupling constants in the Standard Model from the
experimentally measured values at the Z-pole. α∗

1 ≡ 5/3α1, since this is the relevant
coupling in Grand Unified Theories.

SU(3) × SU(2)L × U(1) gauge coupling constants are unified at a high scale MX ∼
1016 GeV :††

√

5

3
g1(MX) = g2(MX) = g3(MX) ≡ gX . (45)

The gaugino masses, Mi, are also assumed to unify,

Mi(MX) ≡ m1/2 . (46)

At lowest order, the gaugino masses then scale in the same way as the corresponding
coupling constants,

Mi(MW ) = m1/2
g2

i (MW )

g2
X

(47)

yielding

M2 =
α

sin2 θW

1

αs

M3

††This normalization of the U(1)Y coupling constant is canonical in Grand Unified Theories.
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Figure 8: Evolution of the coupling constants in a low energy SUSY model from the
experimentally measured values at the Z-pole. The SUSY thresholds are taken to be
at 1 TeV . α∗

1 ≡ 5/3α1, since this is the relevant coupling in Grand Unified Theories.

M1 =
5

3
tan2 θWM2 . (48)

The gluino mass is always the heaviest of the gaugino masses. This relationship between
the gaugino masses is a fairly robust prediction of SUSY GUTS and persists in models
where the supersymmetry is broken dynamically.[3, 14]

Typical SUSY GUTS also assume that there is a common scalar mass at MX ,

m2
1(MX) = m2

2(MX) ≡ m2
0

M̃2
Q(MX) = M̃2

d (MX) = M̃u(MX) = M̃2
L(MX) = M̃2

e (MX) ≡ m2
0 . (49)

The neutral Higgs boson masses at MX are then M2
h,H = m2

0+µ2. As a final simplifying
assumption, a common A parameter is assumed,

AT (MX) = Ab(MX) = .... ≡ A0 . (50)

With these assumptions, the SUSY sector is completely described by 5 input parameters
at the GUT scale,[38]
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1. A common scalar mass, m0.

2. A common gaugino mass, m1/2.

3. A common trilinear coupling, A0.

4. A Higgs mass parameter, µ.

5. A Higgs mixing parameter, B.

This set of assumptions is often called the “superstring inspired SUSY GUT” or SUGRA
(although the connection with superstrings and/or supergravity is mostly wishful think-
ing) or the “constrained MSSM” (CMSSM). Although this framework is somewhat
ad hoc, it does provide guidance to reduce the immense parameter space of a SUSY
model. In actual practice, these relationships are satisfied only in the simplest models.

The strategy is now to input the 5 parameters given above at MX and to use
the renormalization group equations to evolve the parameters to MW . In fact, the
requirement that the Z boson obtain its measured value when the parameters are
evaluated at low energy can be used to restrict | µB |, leaving the sign(µ) as a free
parameter. We can also trade the parameter B for tan β. In this way the parameters
of the model become

m0, m1/2, A0, tan β, sign(µ) . (51)

This form of a SUSY theory is extremely predictive, as the entire low energy spectrum
is predicted in terms of a few input parameters. Within this scenario, contours for
the various SUSY particle masses can be found as a function of m0 and m1/2 for given
values of tan β, A0 and sign(µ).[37, 38]

It is instructive to study the scalar masses within this scenario. The evolution of
the sleptons between MX and MW is small and we have the approximate result for the
slepton masses,[8, 37]

M̃L(MW )2 ∼ M̃e(MW )2 ∼ m2
0, (52)

while the squark masses are roughly

M̃2
q (MW ) ∼ m2

0 + 4m2
1/2 . (53)

Since the squarks have strong interactions, (which drives the masses upwards), their
masses at the weak scale tend to be larger than the sleptons. Once all the particle
masses have been computed in this scheme, then their production cross sections and
decay rates at any given accelerator can be computed unambiguously.

Changing the input parameters at MX (for example, assuming non-universal scalar
masses) of course changes the phenomenology at the weak scale. A preliminary inves-
tigation of the sensitivity of the low energy predictions to these assumptions has been
made in Ref. [3]. For now, we will consider the Grand Unified Model described above
as a starting point for phenomenological investigations into SUSY and hope that the
general search strategies developed for this model will be applicable to other models.

Electroweak Symmetry Breaking

The simple SUSY model described above has the appealing feature that it explains
the mechanism of electroweak symmetry breaking. Below, we sketch the argument.

24



In the Standard Model (non-supersymmetric) with a single Higgs field, φ, the
scalar potential is given by:

V (φ) = µ2φ2 + λφ4 . (54)

By convention, λ > 0. If µ2 > 0, then V (φ) > 0 for all φ not equal to 0 and there
is no electroweak symmetry breaking. If, however, µ2 < 0, then the minimum of the
potential is not at φ = 0 and the potential has the familiar Mexican hat shape. When
the Lagrangian is expressed in terms of the physical field, φ′ ≡ φ − v, which has zero
vacuum expectation value, then the electroweak symmetry is broken and the W and Z
gauge bosons acquire non-zero masses. We saw in the previous sections that this same
mechanism gives the W and Z gauge bosons their masses in the MSSM. This simple
picture leaves one looming question:

Why is µ2 < 0? (55)

It is this question which the SUSY GUT models can answer.
In the minimal SUGRA model which we have described above, the neutral Higgs

bosons both have masses, M2
h,H = m2

0 +µ2, at MX while the squarks and sleptons have
mass m0 at MX . Clearly, at MX , the electroweak symmetry is not broken since the
Higgs bosons have positive mass-squared. The masses scale with energy according to
the renormalization group equations.[39] If we neglect gauge couplings and consider
only the scaling of the third generation scalars we have,[40]
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where Q̃3
L is the SU(2)L doublet containing t̃L and b̃L, h is the lightest Higgs boson, λT

is the top quark Yukawa coupling constant given in Eq. 31, and Q is the effective scale
at which the masses are measured. The signs are such that the Yukawa interactions
(proportional to MT ) decrease the masses, while the gaugino interactions increase the
masses. Because of the 3 − 2 − 1 structure of the last term in Eq. 56, the Higgs mass
decreases faster than the squark masses and it is possible to drive M2

h < 0 at low energy,
while keeping M̃2

Q3
L

and M̃2
tR

positive. A generic set of scalar masses in a typical SUSY

GUT model is shown in Fig. 9. We can clearly see that the lightest Higgs boson mass
becomes negative around the electroweak scale.[41]

For large λT , we have the approximate solution,

M2
h(Q) = M2

h(MX) − 3

8π2
λ2

T (M̃2
Q3

L
+ M̃2

tR
+M2

h + A2
T ) log

(

MX

Q

)

. (57)

Hence the larger MT is, the faster M2
h goes negative. This of course generates elec-

troweak symmetry breaking. If MT were light, M2
h would remain positive.[40] This ob-

servation was made ten years ago when we thought the top quark was light, (∼ 40 GeV ).
At that time it was ignored as not being phenomenologically relevant. In fact, this
mechanism only works for MT ∼ 175 GeV !

• SUSY GUTS can explain electroweak symmetry breaking. The lightest Higgs
boson mass is negative, m2

h < 0, because MT is large.
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Figure 9: Sample masses of SUSY particles in a SUSY GUT. At the GUT scale MX ,
we have taken m0 = 200 GeV,m1/2 = 100 GeV, µ = 100 GeV and Ai = 0. The solid
line is the lightest neutral Higgs boson mass. The dashed lines are the gaugino masses
(the largest is the gluino) and the dot-dashed lines are typical squark masses.

The 3 − 2 − 1 structure of Eq. 56 drives M2
h negative faster than the squark

masses. This is important because driving the squark mass negative would have the
undesired effect of breaking the color SU(3) symmetry. The requirement that the
electroweak symmetry breaking occur through the renormalization group scaling of the
Higgs boson mass, (as given in Eq. 56) also restricts the allowed values of tan β to
tan β > 1. (Remember that λT depends on β through Eq. 31.)

Fixed Point Interactions

In the previous subsection we saw that a large top quark mass could generate
electroweak symmetry breaking in a SUSY GUT model. Here we show that the simplest
SUSY GUT actually predicts a large top quark mass.

The top quark mass is determined in terms of its Yukawa coupling and scales with
energy, Q,[42]

λT (Q) =
MT (Q)

MW

g√
2 sin β

. (58)

Including both the gauge couplings and the Yukawa couplings to the t- and b- quarks,
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the scaling is:

dλT

d log(Q)
=

λT

16π2

{

−13

9
g2
1 − 3g2

2 −
16

3
g2
3 + 6λ2

T + λ2
B

}

. (59)

To a good approximation, we can consider only the contributions from the strong
coupling constant, g3, and the top quark Yukawa coupling, λT . If we begin our scaling
at MX and evolve λT to lower energy, we will come to a point where the evolution of
the Yukawa coupling stops,

dλT

d log(Q)
= 0 . (60)

At this point we have roughly,

− 16

3
g2
3 + 6λ2

T = 0 (61)

which gives,

λT ∼ 4

3

√
2παs ∼ 1, (62)

or
MT ∼ (200 GeV ) sin β . (63)

This point where the top quark mass stops evolving is called a fixed point . What this
means is that no matter what the initial condition for λT is at MX , it will always
evolve to give the same value at low energy. For tanβ ∼ 2, the fixed point value for
the top quark mass is close to the experimental value. More sophisticated analyses do
not change this picture substantially.

• SUSY GUTS can naturally accommodate a large top quark mass for tanβ ∼ 1−3.

b− τ Unification

The unification of the b- and τ - Yukawa coupling constants, λB and λτ , at the
GUT scale is a concept much beloved by theorists since

λB(MX) = λτ (MX) (64)

occurs naturally in many GUT models. Requiring that the b quark have its experimen-
tal value at low energy leads to a prediction for the top quark mass in terms of tan β.
There are two solutions which yield MT = 175 GeV ,[42]

tanβ ∼ 1

or tanβ ∼ MT

Mb
. (65)

The first solution roughly corresponds to the fixed point solution of the previous sub-
section. The second solution with tan β ∼ 35 has interesting phenomenological conse-
quences, since for large tanβ the coupling of the lightest Higgs boson to b quarks is
enhanced relative to the Standard Model. (See Fig. 3). The values in the tan β −MT

plane allowed by b − τ unification depend sensitively on the exact value of the strong
coupling constant, αs, used in the evolution and so there is a significant uncertainly in
the prediction.
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• SUSY GUTs allow for the unification of the b− τ Yukawa coupling constants at
the GUT scale along with the experimentally observed value for the top quark
mass.

Similar relationships to Eq. 64 involving the first two generations do not work.

Comments

We see that SUSY plus grand unification has many desirable features and can
explain a lot:

1. There are no troubling quadratic divergences requiring disagreeable cancellations.

2. MT is large because λT evolves from the GUT scale to its fixed point.

3. Electroweak symmetry is broken, m2
h < 0, because MT is large.

4. b−τ unification can be incorporated, leading to the experimentally observed value
for the top quark mass.

Afficianados of SUSY can add many more items to this list.[43] For instance, the LSP
is a leading candidate for cold, dark matter.[44] The conclusion is inescapable:

SUSY IS HERE TO STAY !

SEARCHING FOR SUSY

We begin this section with a description of the effects of SUSY particles on precision
measurements and rare decays. We then turn to experimental limits on the various
particles and search strategies at current and future machines. A more detailed expose
can be found in the lectures of Tata[8] along with up to the minute limits in Refs. [4, 5].

Indirect Hints for SUSY

One might hope that the precision measurements at the Z-pole could be used to
garner information on the SUSY particle spectrum. Since the precision electroweak
measurements are overwhelmingly in good agreement with the predictions of the Stan-
dard Model, it would appear that stringent limits could be placed on the existence of
SUSY particles at the weak scale. There are two reasons why this is not the case.

The first is that SUSY is a decoupling theory . With the exception of the Higgs
particles, the effects of SUSY particles at the weak scale are suppressed by powers
of M2

W/M
2
SUSY , where MSUSY is the relevant SUSY mass scale, and so for MSUSY

larger than a few hundred GeV , the SUSY particles give negligible contributions to
electroweak processes. The second reason why there are not stringent limits from
precision results at LEP has to do with the Higgs sector. The Higgs bosons are the
only particles in the spectrum which do not decouple from the low energy physics when
they are very massive. The fits to electroweak data tend to prefer a Higgs boson in the
100 GeV mass range.[45] Since the MSSM requires a light Higgs boson with a mass in
this region anyways, the electroweak data is completely consistent with a SUSY model
with a light Higgs boson and all other SUSY particles significantly heavier.
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Attempts have been made to perform global fits to the electroweak data and to fix
the SUSY spectrum this way.[46, 47] It is possible to obtain a fit where the χ2/degree
of freedom is roughly the same as in the Standard Model fit. Although the fits do not
yield stringent limits on the SUSY particle masses, they do exhibit several interesting
features. They tend to prefer either small tanβ, tanβ ∼ 2, or relatively large values,
tan β ∼ 30. In addition, the fitted values for the strong coupling constant at MZ ,
αs(MZ), are slightly smaller in SUSY models than in the Standard Model. (For tanβ =
1.6, Ref. [46] finds αs(MZ) = .116± .005 and for tanβ = 34, they find αs(MZ) = .119±
.005.) It is clear that all precision electroweak measurements can be accommodated
within a SUSY model, but the data show no preference for these models.

There are also numerous indirect limits coming from the effects of SUSY particles
on rare decays. Since the SUSY particles circulate in loops, they can affect rare B
and K decays (among others). One of the most restrictive limits is from the CLEO
measurement of the inclusive decay B → Xsγ,[48]

BR(B → Xsγ) = (2.32 ± .67) × 10−4, CLEO (66)

which is sensitive to loops containing the new particles of a SUSY model. The contri-
bution from tH± loops always adds constructively to the Standard Model result and
hence non- supersymmetric two- Higgs doublet models are severely restricted by the
measurement of b→ sγ.

The situation is different in a SUSY model, however, since there are additional
contributions from squark-chargino loops, squark- neutralino loops, and squark-gluino
loops. The contributions from the squark-neutralino and squark-gluino loops are small
and are typically neglected. The dominant contribution from the squark-chargino loops
is proportional to ATµ and thus can have either sign relative to the Standard Model
and charged Higgs loop contributions. There will therefore be regions of SUSY pa-
rameter space which are excluded depending upon whether there is constructive or
destructive interference between the Standard Model/ charged Higgs contributions and
the squark-chargino contribution.[49] The limit which can be obtained is obviously
very sensitive to the sign(ATµ) and can be easily understood for large tanβ where
the squark-chargino contribution is completely dominant. Neglecting QCD corrections
(which are significant) we have,[50]

BR(b → sγ)

BR(b→ ceν)
∼ | VtsVtb |2

| Vcb |2
6α

π

{

C +
M2

TATµ

m̃4
T

tanβ
}2

, (67)

where C (positive) is the contribution from the Standard Model and charged Higgs
loops and m̃T is the stop mass. For ATµ positive, this leads to a larger branching ratio,
BR(b → sγ), than in the Standard Model. Since the Standard Model prediction is
already somewhat above the measured value, we require ATµ < 0 to avoid conflict with
the experimental measurement if m̃T is at the electroweak scale and tanβ is large. ‡‡

Detailed plots of the allowed regions for various assumptions about tan β, µ, and AT

are given in Ref. [51]. Depending on tanβ and the sign of ATµ, this process probes
stop masses in the 100 − 300 GeV region. For large tanβ, B → Xsγ may probe mass
scales as large as a TeV .[52]

‡‡Reader beware: There are conflicting definitions of the sign of µ in the literature. The only way to
be sure is to go back to the superpotential of Eq. 16 to see how µ is defined.
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Another class of important indirect limits on SUSY models comes from flavor

changing neutral current (FCNC) processes such as K0 −K
0

mixing. In general, the
matrix which diagonalizes the squark mass matrix is different from that which diag-
onalizes the quark mass matrix and so there are off-diagonal interactions which can
mediate FCNC’s. The contributions from squarks to FCNC processes vanish if the
squarks have degenerate masses and so the limits are typically of the form:

∆m̃2

m̃2
< O(10−3) , (68)

where ∆m̃2 is the mass-squared splitting between the different squarks and m̃ is the
average squark mass. A detailed discussion of FCNCs in SUSY models and references
to the literature is given in Ref. [53]. As a practical matter, the assumption is often
made that there are 10 degenerate squarks, corresponding to the scalar partners of the
u, d, c, s, and b quarks, while the stop squarks are allowed to have different masses from
the others. This avoids phenomenological problems with FCNCs.

Experimental Limits and Search Strategies

We turn now to a discussion of some of the existing experimental limits on the
various SUSY particles and also to the search strategies applicable at present and future
accelerators. This section is intended only to give the flavor of how SUSY searches
proceed and not as a comprehensive guide. We begin with the Higgs sector.

Observing SUSY Higgs Bosons

The goal in the Higgs sector is to observe the 5 physical Higgs particles, h,H,A,H±,
and to measure as many couplings as possible to verify that the couplings are those of
a SUSY model. The lightest neutral Higgs boson in the minimal SUSY model is unique
in the SUSY spectrum because there is an upper bound to its mass,

Mh < 130 GeV. (69)

All other SUSY particles in the model can be made arbitrarily heavy just by adjusting
the soft SUSY breaking parameters in the model and so be just out of reach of today’s or
tomorrow’s accelerators (although if they are heavier than around 1 TeV , much of the
motivation for low energy SUSY disappears). The lightest SUSY Higgs boson, however,
cannot be much outside the range of LEPII and can almost certainly be observed at the
LHC . Hence an extraordinary theoretical effort has gone into the study of the reach of
various accelerators in the SUSY Higgs parameter space since in this sector it will be
possible to experimentally exclude the MSSM if a light Higgs boson is not observed.

If we find a light neutral Higgs boson, then we want to map out the parameter
space to see if we can distinguish it from a Standard Model Higgs boson. The only
way to do this is to measure a variety of production and decay modes and attempt to
extract the various couplings of the Higgs bosons to fermions and gauge bosons. Since
as MA → ∞, the h couplings approach those of the standard model, there will clearly
be a region where the SUSY Higgs boson and the Standard Model Higgs boson are
indistinguishable. This is obvious from Figs. 3 and 4.
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The search strategies for the SUSY Higgs boson depend sensitively on the Higgs
boson branching ratios, which in turn depend on tanβ. In Figs. 10 and 11, we show
the branching ratios for the lightest SUSY Higgs boson, h, into some interesting decay
modes assuming that there are no SUSY particles light enough for the h to decay
into. (These figures include radiative corrections to the branching ratios, which can
be important.[32]) For a Higgs boson below the WW threshold, the decay into bb is
completely dominant. Unfortunately, there are large QCD backgrounds to this decay
mode and so it is often necessary to look at rare decay modes. The branching ratios
to bb, τ+τ−, and µ+µ− are relatively insensitive to tanβ, but the WW ∗, ZZ∗, and γγ
rates have strong dependences on tanβ as we can see from Figs. 10 and 11.
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Figure 10: Branching ratios of the lightest Higgs boson assuming decays into other
SUSY particles are kinematically forbidden. WW ∗ and ZZ∗ denote decays with one
off-shell gauge boson and MS is a typical squark mass.[32]

Direct limits on SUSY Higgs production have been obtained at LEP by searching
for the complementary processes,[31]

e+e− → Zh

e+e− → Ah . (70)
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Figure 11: Branching ratios of the lightest Higgs boson assuming decays into other
SUSY particles are kinematically forbidden.[32]

From the couplings of Eq. 33, we see that the process e+e− → Zh is suppressed
by sin2(β − α) relative to the Standard Model Higgs boson production process, while
e+e− → Ah is proportional to cos2(β−α). The moral is that it is impossible to suppress
both processes simultaneously if both the h and the A are kinematically accessible! The
experimental searches look for final states with b’s and τ ’s since these have the largest
branching ratios. Because the Higgs sector can be described by the two parameters,
Mh and tan β, searches exclude a region in this plane. (Remember that MA can be
expressed in terms of Mh and tan β at lowest order. When radiative corrections are
included, there will be a dependence on the mixing parameters, Ai and µ, and on the
squark masses). The LEP searches for Higgs bosons, e+e− → Zh and e+e− → AH ,
exclude the region, [31]

Mh > 44 GeV, for any tanβ . (71)

For a given value of tanβ, there may be a stronger bound. It is important to note that
the LEP searches do not leave any window for a very light (on the order of a few GeV )
Higgs boson. The limit on a SUSY Higgs boson is weaker than the corresponding limit
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on the Standard Model Higgs boson, MSM
h > 65 GeV , due to the suppression in the

couplings of the Higgs boson to vector bosons.
At LEPII, the cross section for either Zh (small tan β) or Ah (large tanβ) is

roughly .5 pb. With a luminosity of 150/pb/yr, this leads to 75 events/yr before the
inclusion of branching ratios. Fig. 12 shows the cross sections for two different values
of tan β and the complementarity of the two processes can be clearly observed. (The
dependence on the top quark mass arises from the inclusion of radiative corrections.)

The limits on the Higgs boson mass could be substantially altered if there is a
significant branching rate into invisible decay modes, such as the neutralinos,

h,A→ χ̃0
1χ̃

0
1 . (72)

These branching ratios could be as high as 80%, but are extremely model dependent
since they depend sensitively on the parameters of the neutralino mixing matrix. In Fig.
13, we show the branching ratio of the lightest Higgs boson to χ̃0

1χ̃
0
1 for several choices

of parameters. For tanβ = 2, with the set of parameters which we have chosen, the
branching ratio is always greater than 40%. If the invisible decay modes are significant,
a different search strategy for the Higgs boson must be utilized and LEPII can put a
limit on the product of the Higgs boson mixing angles, β − α, and the branching ratio
to invisible modes:

R2
1 ≡ sin2(β − α)BR(h→ visible)

R2
2 ≡ sin2(β − α)BR(h→ invisible) . (73)

For Mh = 40 GeV , the 95% confidence level excluded region from LEP is,[31]

R2
1 < .3

R2
2 < .1 . (74)

These limits can be reinterpreted in terms of the parameters of the MSSM (Ai, µ,
M2, M1, m̃, etc.) and will be greatly improved at LEPII. For Mh = 80 GeV and an
integrated luminosity of 150/pb at

√
s = 192 GeV , the 95% confidence level limit will

be:

R2
1 < .1

R2
2 < .3 . (75)

These limits will significantly restrict the allowed SUSY parameter space.
A µ+µ− collider could in principle obtain stringent bounds on a SUSY Higgs boson

through its s-channel couplings to the Higgs.[54] Since these couplings are proportional
to the lepton mass, the s-channel Higgs couplings will be much larger at a µ+µ− collider
than at an e+e− collider. For large tan β, the lighter Higgs boson could be found in
the process e+e− → Zh at LEPII or at an NLC.[31, 55] However, for large tanβ, the
coupling of the heavier Higgs boson to gauge boson pairs is highly suppressed, (see Eq.
33), so the H can’t be found through e+e− → ZH . Instead the H can be found through
µ+µ− → H → bb, which is enhanced by the factor tan2 β relative to µ+µ− → hSM → bb.

A muon collider could also be very useful for obtaining precision measurements of
the lighter Higgs boson mass. The idea is that the h has been discovered through either
the process e+e− → Zh or µ+µ− → Zh and so we have a rough idea of the Higgs boson
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Figure 13: Branching ratio of the lightest Higgs boson to χ̃0
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0
1. The curve with

tan β = 30 has Mχ0
1

= 33 GeV , while that with tanβ = 2 has Mχ0
1

= 7 GeV .[32]

mass. A muon collider could be tuned to sit right on the resonance, µ+µ− → h. By
doing an energy scan around the region of the resonance, a precise value of the mass
could be obtained due in large part to the narrowness of the muon beam as compared to
the beam in an electron collider. (The narrowness of the beam is due to the suppression
of synchrotron radiation in a muon collider.)

At the LHC, for most Higgs masses the dominant production mechanism is gluon
fusion, gg → h,H or A. These processes proceed through triangle diagrams with
internal b and t quarks and also through squark loops. In the limit in which the top
quark is much heavier than the Higgs boson, the top quark contribution is a constant,
while the b quark contribution is suppressed by (Mb/v)

2 log(Mh/Mb) and so only the top
quark contribution is numerically important. For large tanβ, however, the dominance
of the top quark loop is overtaken by the large bbh coupling and the bottom quark
contribution becomes important, (as seen in Fig. 3). The production rate is therefore
extremely sensitive to tanβ. Both QCD corrections and squark loops can also be
numerically important.[56] In fact, the QCD corrections increase the rate by a factor
between 1.5 and 2. The rate for pp→ h at the LHC is shown in Fig. 14 as a function of
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tan β for Mh = 80 GeV . We see that there are a relatively large number of events. For
example, for Mh ∼ 80 GeV , the LHC cross section is roughly 100 pb. With a luminosity
of 1033/cm2/sec, this yields 106 events/year.
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0.0

50.0

100.0

150.0

σ 
(p

b)
SUSY Higg Production at the LHC
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Figure 14: Cross section for production of the lightest SUSY Higgs boson at the LHC
as a function of tanβ.

Unfortunately, there are large backgrounds to the dominant decay modes, ( bb, µ+µ−,
and τ+τ−), for a Higgs boson in the 100 GeV region.[57] The decay h → ZZ∗ will be
useful, but its branching ratio decreases rapidly with decreasing Higgs mass. In order
to cover the region around Mh ∼ 80 − 100 GeV , it will be necessary to look for the
Higgs decay to γγ,

gg → h,H → γγ . (76)

(From Figs. 10 and 11, we see that the BR(h→ γγ) is typically < 10−3 − 10−5.) This
process will be extremely difficult to observe at the LHC due to the small rate and the
desire to observe the h→ γγ decay has been one of the driving forces behind the design
of both LHC detectors.[58] For large MA, the rate is roughly independent of tanβ for
tan β > 3 and can be used to exclude MA > 150 GeV with the full design luminosity of
3 × 105/pb. (With a smaller luminosity of 3 × 104/pb, the h → γγ process is sensitive
to roughly MA > 270 GeV . See Fig. 15 for the exact region.)
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In order to exclude the region with smaller tanβ, the process pp → Wh → lνbb
can be used.[59] This process can exclude a region with MA > 100 GeV and tan β < 4
(see Fig. 15) and demonstrates the crucial need for b-tagging at the LHC in order to
cover all regions of SUSY parameter space. In Fig. 15, we see the excluded region
formed by combining the LHC and LEP limits.[60] A variety of Higgs production and
decay channels can be utilized in order to probe the entire tan β−MA plane. The most
striking feature of Fig. 15 is the region around MA ∼ 100 GeV for tan β > 5 where
the lightest Higgs boson cannot be observed. In the region with MA ∼ 100− 200 GeV ,
both the htt coupling and the h → γγ branching ratios are suppressed relative to the
Standard Model rates. Furthermore, the dominant decays, h → bb and h → τ+τ−,
have large backgrounds from Z decays. It will be necessary to look for the decays of
the heavier neutral Higgs boson, H , or the pseudoscalar, A, to τ+τ− pairs in order to
probe this region,

H,A→ τ+τ− → lνqq . (77)

Detector studies by the ATLAS and CMS collaborations suggest that these decay modes
may be accessible.

Finding the Zoo of SUSY Particles

In addition to the multiple Higgs particles associated with SUSY models, there
is a whole zoo of other new particles. There are the squarks and gluinos which are
produced through the strong interactions and the sleptons, charginos, and neutralinos
which are produced weakly.

We begin by discussing some generic signals for supersymmetry. All SUSY par-
ticles in a theory with R parity conservation eventually decay to the LSP, which is
typically taken to be the lightest neutralino, χ̃0

1, although in some models it could be
the gravitino.[22] The LSP’s interactions with matter are extremely weak and so it
escapes detection leading to missing energy.

• A basic SUSY signature is missing energy, Emiss
T , from the undetected LSP.

A SUSY model typically produces a cascade of decays, until the final state consists of
only the LSP plus jets and leptons. Hence typical final states are:

• l± + jets + Emiss
T

• l±l± + jets + Emiss
T

• l±l∓ + jets + Emiss
T .

Because of the presence of the LSP in the final state, it is not possible to completely
reconstruct the masses of the SUSY particles, although a significant amount of infor-
mation about the masses can be obtained from the event structure.

• A combination of characteristic signatures may determine the SUSY model.

Because the gluinos are Majorana particles, they have some special characteristics
which may be useful for their experimental detection. They have the property:

Γ(g̃ → l+X) = Γ(g̃ → l−X) . (78)

Hence gluino pair production can lead to final states with same sign l±l± pairs.[38, 61]
The standard model background for this type of signature is rather small.

37



Figure 15: LHC (with low luminosity) and LEPII discovery limits for SUSY Higgs
bosons. Figure from Ref. [60].
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• Same sign di-lepton pairs are a useful signature for gluino pair production.

Another generic signature for SUSY particles is tri-lepton production.[62] If we
consider the process of chargino-neutralino production,then it is possible to have the
process:

χ̃±
1 χ̃

0
2 → lνχ̃0

1 + l
′
l′χ̃0

1 . (79)

Again this is a signature with a small standard model background.
In the following sections we will examine several of these signatures in detail. In

order to predict the SUSY particle production rates, it is necessary to have an event
generator which includes both the production and decays of the SUSY particles. A
number of generators exist for both e+e− and hadronic colliders. The physics assump-
tions of two of the most commonly used event generators for SUSY (ISASUSY and
SPYTHIA) are reviewed in Ref. [63].

Chargino and Neutralino Production

As an example of SUSY particle searches, we consider the search for chargino pair
production at an electron-positron collider,

e+e− → χ̃+
1 χ̃

−
1 , (80)

(where χ̃±
1 are the lightest charginos.) The chargino mass matrix has a contribution

from both the fermionic partner of the W±, ω̃±, and from the fermionic partner of the
charged Higgs, h̃±, and so depends on the two unknown parameters in the mass matrix,
µ and M2. (See Eq. 40). If | µ |<< M2, we say the chargino is “Higgsino-like”, while if
| µ |>> M2, it is termed “gaugino-like”. Results are usually presented in terms of the
mass of the lightest chargino, Mχ̃+

1
, and µ.

There are two types of Feynman diagrams contributing to chargino pair produc-
tion: the first is an s-channel exchange of a γ or a Z, and the second is the t-channel
exchange of the scalar partner of the neutrino, ν̃L. There is a destructive interference
between the two types of diagrams. The largest interference occurs for light ν̃L and
χ̃±

1 “Gaugino-like”. For light ν̃L, m̃νL
< 60 GeV , the destructive interference can make

the cross section significantly smaller, leading to a weaker limit. For a heavy ν̃L, the
interference between the diagrams is small and the production cross section at LEP is
σ ∼ 6−18 pb for Mχ̃+

1
∼ 60 GeV . Hence any limits which may be obtained will depend

on m̃νL
, as well as µ and M2.

The search proceeds by looking for the decay χ̃±
1 → χ̃0

1l
±ν . The assumption is

made that the χ̃0
1 is stable and escapes the detector unseen. Using this technique,

ALEPH obtains a limit,[64]

Mχ̃± > 67.8 GeV @95%CL (81)

For :

{

mν̃L
> 200 GeV

Mχ̃± gaugino − like, | µ |>> M2 .
(82)

This limit is not very sensitive to tan β, but is considerably weaker when | µ |≤
100 GeV . It is clearly important to understand the input assumptions about the
various SUSY parameters when interpreting this limit, as is the case with most limits
on SUSY particles.
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It is interesting to compare the search for charginos and neutralinos at LEP with
what is possible at the LHC. At the LHC one clear signature will be,[65]

pp→ χ̃±
1 χ̃

0
2 (83)

with,

χ̃±
1 → l′±νχ̃0

1

χ̃0
2 → llχ̃0

1 . (84)

The cross section for this process is σ ∼ 1− 100 pb for masses below 1 TeV . This gives
a “tri-lepton signature” with three hard, isolated leptons, significant ET and little jet
activity.[62] The dominant Standard Model backgrounds are from tt production (which
can be eliminated by requiring that the 2 fastest leptons have the same sign) and W±Z
production (which is eliminated by requiring that Mll 6= MZ).

To get reliable predictions at a hadron collider, it is not enough to use your Monte
Carlo generator to simulate the process of interest (here chargino pair production).
One must also simulate all the other SUSY production processes.[66] It is amusing to
note that at the LHC the largest background to chargino and neutralino production is
indeed from other SUSY particles, such as squark and gluino production, which also
give events with leptons, multi-jets, and missing ET . Since the squarks and gluinos are
strongly interacting, they will generate more jets and a harder missing ET spectrum
than the charginos and neutralinos. This can be used to separate squark and gluino
production from the chargino and neutralino production process of interest.[38]

• The biggest background to SUSY is SUSY itself.

As an example, we quote from a study of the tri-lepton signature at the LHC which
assumes relatively light charginos and neutralinos,[38]

Mχ̃+

1
= 96 GeV

Mχ̃0
2

= 96 GeV

Mχ̃0
1

= 45 GeV . (85)

Once the SUSY particle masses are specified all the production rates can be computed
unambiguously. After cuts, Ref. [38] finds (at the LHC):

Signal : 41 fb

tt bkdg : 2.4 fb

WZ bkgd : .5fb

g̃, q̃ bkgd : 5.6 fb, (86)

demonstrating the viability of this signature at the LHC.

• The tri-lepton signal offers the possibility of untangling the χ̃+χ̃0 signal from the
gluino and squark background.

CDF has searched for this decay chain and we see the results in Fig. 16.[67] Since the
branching ratio to tri-leptons depends on the parameters of the chargino and neutralino
mass matrix they also show the prediction from a specific Grand Unified Theory. Within
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Figure 16: Limits on the tri-lepton signature in the reaction pp → χ̃±
1 χ̃

0
2 from CDF.

This figure from Ref. [67].

this model, the limit translates to Mχ̃±
1
> 73 GeV . This is roughly the same limit as

that found at LEP, but involves different assumptions about the parameters of the
model.

Aside from observing the process and verifying the existence of charginos and
neutralinos, we would also like to obtain a handle on the masses of the SUSY particles.
The kinematics are such that,

0 < Mll < Mχ̃0
2
−Mχ̃0

1
, (87)

and hence the distribution dσ/dMll has a sharp cut-off at the kinematic boundary which
can be used to obtain information on the masses. Recently, significant progress has been
made in our understanding of the capabilities of a hadron collider for extracting values
of the SUSY particle masses from different event distributions.[68]
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Squarks, Gluinos, and Sleptons

Squarks and sleptons,(f̃i), can be produced at both e+e− and hadron colliders. At
LEP, they would be pair produced via

e+e− → γ, Z → f̃if̃
∗
i . (88)

If there were a scalar with mass less than half the Z mass, it would increase the total
width of the Z, ΓZ . Since ΓZ agrees quite precisely with the Standard Model prediction,
the measurement of the Z lineshape gives

m̃ > 35 − 40 GeV (89)

for squarks and sleptons. The limit from the Z width is particularly important because
it is independent of the squark or slepton decay mode and so applies for any model
with low energy supersymmetry.

100.0 200.0 300.0 400.0 500.0
Mgluino (GeV)

10
-3

10
-1

10
1

10
3

σ 
(p

b)

Squark and Gluino Production at the Tevatron
E=1.8 TeV

Msquark=Mgluino

Figure 17: Squark and gluino production at the Tevatron assuming Mq̃ = Mg̃. The
solid line is pp → g̃g̃, the dot-dashed q̃q̃, the dotted q̃q̃∗, and the dashed is q̃g̃. This
figure includes only the Born result and assumes 10 degenerate squarks.

There are limits on the direct production of squarks and gluinos from the Tevatron.
The rates for squark and gluino production at both the Tevatron and the LHC are shown
in Figs. 17 and 18 and analytic expressions for the Born cross sections can be found
in Ref. [69]. The QCD radiative corrections to these process are large and increase
the cross sections by up to a factor of two.[70] We neglect the mixing effects in the
squark mass matrix and assume that there are 10 degenerate squarks associated with
the light quarks. (The top squarks are assumed to be different since here mixing effects
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Figure 18: Squark and gluino production at the LHC assuming Mq̃ = Mg̃. The solid
line is pp → g̃g̃, the dot-dashed q̃q̃, the dotted q̃q̃∗, and the dashed is q̃g̃. This figure
includes only the Born result and assumes 10 degenerate squarks.

are clearly relevant.) The cross sections are significant, around 1 pb for squarks and
gluinos in the few hundred GeV range.

The cleanest signatures for squark and gluino production are jets plus missing ET

from the undetected LSP, assumed to be χ̃0
1, and jets plus multi leptons plus missing

ET .[71] It will clearly be exceedingly difficult to separate the effects of squarks and
gluino production, since they both contribute to the same experimental signature. The
patterns of squark decays in various scenarios are examined in Ref. [72]. To obtain a
limit on the gluino mass, we must therefore assume a limit on the squark mass. For 10
degenerate squarks, the limit from the Tevatron is, [4, 19]

Mq̃ > 218 GeV forMg̃ = Mq̃ . (90)

This limit assumes a cascade decay, q̃ → (....)χ̃0
1. (There are similar limits for Mg̃ <<

Mq̃ and Mg̃ >> Mq̃.)
Limits on the stop squark are particularly interesting since in many models it is

the lightest squark. There are 2 types of stop squark decays which are relevant. The
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first is,
t̃→ bχ̃+

1 → bff
′
χ̃0

i . (91)

The signal for this decay channel is jets plus missing energy. This signal shares many
features with the dominant top quark decay, t → bW+, and in fact there have been
suggestions in the literature that there may be some experimental confusion between
the 2 processes.[73] Another possible decay chain for the stop squark is

t̃→ cχ̃0
1, (92)

which also leads to jets plus missing energy. The 2 cases must be analyzed separately.
The current limit on the stop squark mass from D0 is shown in Fig. 19.[74] We see
that the limit depends sensitively on the mass of the LSP, χ̃0

1.
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Figure 19: Limit on the lightest stop squark mass here labelled t̃1, as a function of the
lightest chargino mass (here labelled Z̃1) from D0. This figure from Ref. [74].

A spectacular signal for squark pair production which can result from the cascade
decays is the production of same sign leptons,

pp→ q̃q̃∗ → (l±l±) + jets + Emiss
T (93)

At the Tevatron with Mq̃ ∼ Mg̃ ∼ 100 GeV , the cross section for jets + Emiss
T is

σ ∼ 1 pb, while the rate for l±l± + jets + Emiss
T is σ ∼ .1pb, which is still significant.

The Standard Model background for this signal is quite small.
From the examples we have given, it is clear that searching for SUSY at a hadron

collider is particularly challenging since there will typically be many SUSY particles
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which are kinematically accessible. Hadron colliders thus have a large discovery poten-
tial, but it is difficult to separate the various processes. To a large extent, one must
trust the generic signatures of supersymmetry: Emiss

T , plus multi-jet and multi-lepton
signatures. One will need to observe a signal in many channels in order to verify the
consistency of the model.

A Case Study

It is instructive to consider an example of how the discovery of a SUSY particle
might occur. Several years ago, CDF presented a single event,

pp→ e+e−γγ + Emiss
T , (94)

for which it was difficult to find a Standard Model explanation.[75] By now, you all know
that events with large missing energy are candidates for SUSY particle production. The
scenario which we can construct is then,

pp→ ẽẽ∗ , (95)

where ẽ is the scalar partner of either the right- or left-handed electron. The production
cross section is then fixed unambiguously in terms of the selectron mass. The fact that
only one event was seen fixes the selectron mass to be in the 100 GeV region. The
selectron is then assumed to decay to an electron and a neutralino,

ẽ→ eχ̃0 . (96)

The question which has engendered furious debate is how the neutralino might
decay,

χ̃0 → X̃γ, (97)

where X̃ is either the lightest neutralino or a gravitino.[76] By examining the kinematics
of the event, we could hope to learn about the underlying SUSY model. Unfortunately,
examination of the 2 photon plus Emiss

T spectrum has produced no more SUSY candi-
dates of the type of Eq. 94.[77]

CONCLUSIONS

Weak scale supersymmetry is a theory in desperate need of experimental input.
The theoretical framework has evolved to a point where predictions for cross sections,
branching ratios, and decay signatures can be reliably made. In many cases, calculations
exist beyond the leading order in perturbation theory. However, without experimental
observation of a SUSY particle or a precision measurement which disagrees with the
Standard Model (which could be explained by SUSY particles in loops) there is no way
of choosing between the many possible manifestations of low energy SUSY and thereby
fixing the parameters in the soft SUSY breaking Lagrangian.

With the coming of LEPII, the Fermilab Main Injector, and the LHC, large regions
of SUSY parameter space will be explored and we can only hope that some evidence
for supersymmetry will be uncovered. The ball is definitely in the experimentalist’s
court !
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