PHYS 5326 – Lecture #2

Wednesday, Jan. 24, 2007 Dr. Jae Yu

- 1. Sources of Neutrinos
- 2. How is neutrino beam produced?
- 3. Physics with neutrino experiments
- 4. Characteristics of accelerator based neutrino experiments
- 5. Neutrino-Nucleon DIS
- 6. v-N DIS Formalism

Neutrino Cross Sections

coupling $\propto I_{weak}^{(3)} - Q_{EM} \sin^2 \theta_W$

$$\frac{d^2\sigma}{dxdy} = \frac{2G_F ME}{\pi} \begin{bmatrix} \left(1 - y - \frac{Mxy}{2E}\right)F_2\left(x, Q^2\right) + \frac{y^2}{2}2xF_1\left(x, Q^2\right) \\ \pm y\left(1 - \frac{y}{2}\right)xF_3\left(x, Q^2\right) \end{bmatrix}$$

$$\sigma_{_{VN}} / E_{_{V}} \approx 0.68 \times 10^{-38} \text{ cm}^2 / \text{GeV}$$

 $\sigma_{_{VN}} / E_{_{V}} \approx 0.35 \times 10^{-38} \text{ cm}^2 / \text{GeV}$

Jae Yu

Wednesday, Jan. 24, 2007

2

Sources of Neutrinos: Solar Neutrinos

- Nuclear Fusion inside stars with the primary (85%) reaction $p + p \rightarrow {}^{2}H + e^{+} + v_{e}$
- Energy spectra

Sources of Neutrinos: Atm and other

- High energy cosmic-ray (He, p, n, etc) interactions in the atmosphere
 - Cosmic ray interacts with air molecules $He + p \rightarrow \pi, K$
 - Secondary mesons decay $\pi^{(\pm)} \rightarrow \mu^{(\pm)} + \nu_{\mu} (\overline{\nu}_{\mu})$
 - Muons decay again in 2.6 μ s $\mu \rightarrow e + v_{\mu} + v_{e}$
- Neutrinos from the Big Bang (relic neutrinos)
- Neutrinos from star explosions
- Neutrinos from natural background, resulting from radioactive decays of nucleus
- Neutrinos from nuclear reactors in power plants

Physics With Neutrinos

- Investigation of weak interaction regime
 - Only interact via weak interaction → This is why neutrinos are used to observe NC interactions
 - Measurement of weak mixing angle
 - Measurement of coupling strength $e=gsin\theta_W$
 - Test for new mediators, such as heavy neutral IVBs
 - Measurement of SM ρ parameter
 - Indirect measurement of M_W : $\sin^2\theta_W = \rho(1-M_W^2/M_Z^2)$
- Measurement of proton structure functions
- Measurement of neutrino oscillations

Neutrino Experiments

- What are the difficulties in neutrino experiments?
 - Neutrino cross sections are small ~10⁻³⁸ $E_{\rm v}$
 - Neutrinos interact very weakly w/ matter
- To increase statistics
 - Increase number of neutrinos
 - Natural or reactor sources will not give you control of beam intensity
 - Need man-made neutrino beams
 - Increase neutrino energy
 - Increase thickness of material to interact with neutrinos →
 Detectors with dense material
- Beam can be made so that it is enriched with a specific flavors of neutrinos, such as $\nu_\tau s.$
 - How does one do this?

Wednesday, Jan. 24, 2007

Detector and Beam Requirements

- Beam and apparatus need to be determined by physics needs
- For weak mixing angle & structure function
 - Need large statistics → Accelerator based experiment with dense detector (target) needed
 - Good focusing of the secondary hadrons from the primary beam target
 - Wider energy range of neutrinos
 - Ability to distinguish CC and NC interactions
 - Tracks of leptons from CC interactions for PID
 - Precise momentum measurement of leptons
 - Precise measurement of hadronic shower energy
 - Finer longitudinal segmentation
 - Cosmic-ray veto

Wednesday, Jan. 24, 2007

- Use large number of protons on target to produce many secondary hadrons (π, K, D, etc)
- Let π and K decay in-flight for ν_{μ} beam
 - $\pi \rightarrow \mu + \nu_{\mu}$ (99.99%), $K \rightarrow \mu + \nu_{\mu}$ (63.5%)
 - Other flavors of neutrinos are harder to make
- Let the beam go through thick shield and dirt to filter out μ and remaining hadrons, except for ν
 - Dominated by ν_{μ}

Wednesday, Jan. 24, 2007

•

•

- Calorimeter
 - 168 FE plates & 690tons
 - 84 Liquid Scintillator
 - 42 Drift chambers interspersed

Wednesday, Jan. 24, 2007

Continuous test beam for in-situ calibration

Measures Muon momentum

Solid Iron Toroid

Δp/p~10%

Jae Yu

The NuTeV Detector

A picture from 1998. The detector has been dismantled to make room for other experiments, such as DØ, CMS and ILC

Wednesday, Jan. 24, 2007

PHYS 5326, Spring 2007 Jae Yu

How Do Neutrino Events Look?

How can we select sign of neutrinos?

- Neutrinos are electrically neutral
- Need to select the charge of the secondary hadrons from the proton interaction on target
- NuTeV experiment at Fermilab used a string of magnets called SSQT (Sign Selected Quadrupole Train)

Neutrino Flux from NuTeV

Two distinct peaks depending on the sources of neutrinos Total number of events after cuts: 1.62M v & 350k \overline{v}

Wednesday, Jan. 24, 2007

PHYS 5326, Spring 2007 Jae Yu

Neutrino Detector for ν_{τ} Observation

- Make an observation of ν_{τ} interaction with nucleon, producing τ in the target, decaying leptonically or hadronically
- Beam of v_{τ} is produced using $D_S \rightarrow \tau + v_{\tau}$ (~7%), $\tau \rightarrow h + v_{\tau} + K_L^0$ (one-prong decay, 49.5%), $\mu v_{\tau} v_{\mu}$ (17%), $e v_{\tau} v_e$ (17%)
- Large number of protons on target (10¹⁷ PoT \rightarrow 2x10¹² v_{τ} /m²)
- Precise detector to observe the kinks of τ decays (emulsion)

14

Neutrino Detectors for $v_{\mu} \rightarrow v_{\tau}$ Oscillation

- Measure $v_{\mu} \rightarrow v_{\tau}$ oscillation, by observing v_{τ} appearing at the detector far away from the source of the beam
- Beam of high flux v_{μ} is produced using π , K decays \rightarrow Use a magnet called horn to focus more hadrons
- Neutrino energies must be high enough to produce ν_τ

Source of Cleaner Neutrino Beam

Muon storage ring can generate 10^6 times higher flux and well understood, high purity neutrino beam \rightarrow significant reduction in statistical uncertainty

But ν_e and ν_μ from muon decays are in the beam at all times

→ Deadly for traditional heavy target detectors

Muon Storage Ring as a Neutrino Source

Homework Assignments

- Compute the fraction of 200GeV π that decay in a 540m decay pipe and the probability of μ , resulting from π decays, surviving in the shield, assuming 940m dirt shield
 - Due: Wed., Jan. 31

