PHYS 5326 – Lecture #4

Wednesday, Jan. 31, 2007 Dr. Jae Yu

- 1. QCD Evolution of PDF
- 2. Measurement of $Sin^2\theta_W$
- 3. Formalism of $Sin^2\theta_W$ in v-N DIS
- 4. Improvements in $Sin^2\theta_W$
- 5. Interpretation of $\text{Sin}^2\theta_{\text{W}}$ and Its Link to Higgs

DGLAP QCD Evolution Equations

 The evolution equations by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi provide mechanism to evolve PDF's to any kinematic regime or momentum scale

$$\frac{dq^{NS}(x,M^{2})}{d\ln M^{2}} = \sum_{i} q^{i} - \overline{q}^{i} = u_{V} + d_{V} = \frac{\alpha_{s}(\mu^{2})}{2\pi} \int_{x}^{1} \frac{dy}{y} q^{NS}(y,M^{2}) P_{qq}\left(\frac{x}{y}\right)$$
$$\frac{dq^{S}(x,M^{2})}{d\ln M^{2}} = \sum_{i} q^{i} + \overline{q}^{i} = \frac{\alpha_{s}(\mu^{2})}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[q^{NS}(y,M^{2}) P_{qq}^{s}\left(\frac{x}{y}\right) + G(y,M^{2}) P_{qG}^{s}\left(\frac{x}{y}\right) \right]$$
$$\frac{dG(x,M^{2})}{d\ln M^{2}} = \frac{\alpha_{s}(\mu^{2})}{2\pi} \int_{x}^{1} \frac{dy}{y} \left[q^{S}(y,M^{2}) P_{Gq}^{s}\left(\frac{x}{y}\right) + G(y,M^{2}) P_{GG}\left(\frac{x}{y}\right) \right]$$

 $P_{ij}(x/y)$: Splitting function which describes the probability for a parton *i* with momentum y get resolved as a parton *j* with momentum x<y

Wednesday, Jan. 31, 2007

PHYS 5326, Spring 2007 Jae Yu

Feynman Diagrams for Parton Splitting

LO: Ο(α_s)

NLO: $O(\alpha_s^2)$

Electroweak Theory

- Standard Model unifies Weak and EM to SU(2)xU(1) gauge theory
 - Weak neutral current interaction
 - Measured physical parameters related to mixing parameters for the couplings

$$g' = g \tan \theta_W \quad e = g \sin \theta_W \quad G_F = \frac{g^2 \sqrt{2}}{8M_W^2} \quad \frac{M_W}{M_Z} = \cos \theta_W$$

- Neutrinos in this picture are unique because they only interact through left-handed weak interactions → Probe weak sector only
 - Less complication in some measurements, such as proton structure

$\text{sin}^2\theta_{\text{W}}$ and $\nu\text{-N}$ scattering

- In the electroweak sector of the Standard Model, it is not known *a priori* what the mixture of electrically neutral electromagnetic and weak mediator is -> This fractional mixture is given by the mixing angle
- Within the on-shell renormalization scheme, $sin^2\theta_W$ is:

$$\sin^2 \theta_w^{On-Shell} = 1 - \frac{M_W^2}{\rho_0 M_Z^2}$$

Provides independent measurement of M_W & information to pin down M_{Higgs} via higher order loop corrections, in comparable uncertainty to direct measurements
 Measures light quark couplings → Sensitive to other types (anomalous) of couplings

•In other words, sensitive to physics beyond SM \rightarrow New vector bosons, compositeness, v-oscillations, etc

EW Higher Order Corrections

- LO GSW requires three parameters: α , G_F and M_Z
- Higher order corrections bring in dependences to two additional parameters: M_{Top} and M_{Higgs}

• Cross section ratios between NC and CC proportional to $sin^2\theta_w$

• Llewellyn Smith Formula:

$$\mathbf{R}^{\nu(\overline{\nu})} = \frac{\sigma_{\mathrm{NC}}^{\nu(\overline{\nu})}}{\sigma_{\mathrm{CC}}^{\nu(\overline{\nu})}} = \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{\mathrm{W}} + \frac{5}{9}\sin^{4}\theta_{\mathrm{W}} \left(1 + \frac{\sigma_{\mathrm{CC}}^{\overline{\nu}(\nu)}}{\sigma_{\mathrm{CC}}^{\nu(\overline{\nu})}} \right) \right)$$

- Very small cross section → Heavy neutrino target
- v_e are the killers (CC events look the same as NC events)

How Can Events be Separated?

Experimental Variable

Define an Experimental Length variable

→ Distinguishes CC from NC experimentally in statistical manner

Past Experimental Results $sin^2 \theta_W^{On-Shell} = 1 - \frac{M_W^2}{M_Z^2} = 0.2277 \pm 0.0036$ $\Rightarrow M_W^{On-Shell} = 80.14 \pm 0.19 \text{GeV/c}^2$

The yellow band represents a correlated uncertainty!!

Improvements on Measurements

- Asses the uncertainties from previous measurements
- Determine what the sources of largest theoretical and experimental uncertainties are
- Provide new methods to reduce large uncertainties

$sin^2\theta_W$ Theoretical Uncertainty

 Significant correlated error from CC production of charm quark (m_c) modeled by slow rescaling mechanism

• Suggestion by Paschos-Wolfenstein by separating v and \overline{v} beams:

$$\mathbf{R}^{-} = \frac{\boldsymbol{\sigma}_{NC}^{\nu} - \boldsymbol{\sigma}_{NC}^{\overline{\nu}}}{\boldsymbol{\sigma}_{CC}^{\nu} - \boldsymbol{\sigma}_{CC}^{\overline{\nu}}} = \boldsymbol{\rho}^{2} \left(\frac{1}{2} - \sin^{2}\boldsymbol{\theta}_{W}\right) = \frac{\mathbf{R}^{\nu} - \mathbf{R}^{\overline{\nu}}}{1 - \mathbf{r}}$$

→ Reduce charm CC production error by subtracting sea quark contributions
 → Only valence u, d, and s contributes while sea quark contributions cancel out
 → Massive quark production through Cabbio suppressed d_v quarks only

Wednesday, Jan. 31, 2007

PHYS 5326, Spring 2007 Jae Yu

Improving Experimental Uncertainties

- Electron neutrinos, $\nu_{\rm e}$, in the beam fakes NC events from CC interactions
 - If the production cross section is well known, the effect will be smaller but since majority come from neutral K (K_L) whose x-sec is known only to 20%, this is a source of large experimental uncertainty
- Need to come up with a beamline that separates neutrinos from anti-neutrinos

Event Contamination and Backgrounds

PHYS 5326, Spring 2007

Jae Yu

•SHORT v_{μ} CC's (20% v, 10% \overline{v}) μ exit and rangeout •SHORT v_{e} CC's (5%) $v_{e}N \rightarrow eX$ •Cosmic Rays (0.9%)

16

•LONG v_{μ} NC's (0.7%) hadron shower punch-through effects

•Hard μ Brem(0.2%) Deep μ events

Sources of experimental uncertainties kept small, through modeling using $\boldsymbol{\nu}$ and TB data

Effect	<mark>Size(</mark> δsin²θ _w)	Tools	
Z _{vert}	0.001/inch	μ⁺μ⁻ events	
X _{vert} & Y _{vert}	0.001	MC	
Counter Noise	0.00035	TB μ's	
Counter Efficiency	0.0002	v events	
Counter active area	0.0025/inch	ν CC, TB	
Hadron shower length	0.0015/cntr	TB π 's and k's	
Energy scale	0.001/1%	ТВ	
Muon Energy Deposit	0.004	v CC	
Wednesday, Jan. 31, 2007 PHYS 5326, Spring 2007 17 Jae Yu			

Measurements of v_e Flux

- Use well known processes (Ke3: $\mathbf{K}^{\pm} \rightarrow \pi^{0} e^{\pm} \overset{(-)}{\nu}_{e}$) ۲
- Shower Shape Analysis can provide direct measurement v_e events, though less precise

 N_{meas}/N_{MC} **1.05** \pm **0.03** (ν_{e}) used for ν_{e} $\Rightarrow \delta R_{v}^{exp} \sim 0.0005$ $1.01 \pm 0.04 \left(\overline{\nu}_{e} \right)$

Weighted average

- v_e from very short events (E_v>180 GeV)
 - Precise measurement of v_e flux in the tail region of flux \rightarrow ~35% more \overline{v}_{e} in \overline{v} than predicted
 - Had to require (E_{had} <180 GeV) due to ADC saturation

Results in $\sin^2\theta_w$ shifts by +0.002

MC to Relate R_v^{exp} to R^v and $sin^2\theta_W$

- Parton Distribution Model
 - − Correct for details of PDF model → Used CCFR data for PDF
 - Model cross over from short ν_{μ} CC events Neutrino xsec vs y at 190 GeV Antineutrino xsec vs y at 190 GeV 324 v=1.019 CFR Data 02 04 05 05 30 3.0 +0 0.2 0.4 0.0 C.B d'occide c=0.05 <=0.125 s=0.125 1.00 205 0.4 0.8 7.5 x-3,175 -0.175 <-0.225 50.5 02 0.8 0.7 0.7
- Neutrino Fluxes
 - $v_{\mu}, v_{e}, \overline{v}_{\mu}, \overline{v}_{e}$ in the two running modes
 - v_e CC events always look short
- Shower length modeling
 - Correct for short events that look long
- Detector response vs energy, position, and time
 - Continuous testbeam running minimizes systematics

Wednesday, Jan. 31, 2007

PHYS 5326, Spring 2007 Jae Yu

$sin^2\theta_W\, Fit \ to \ R_\nu^{\ exp} \ and \ R \ _\nu^{\ exp}$

- Thanks to the separate beam \rightarrow Measure R^v's separately
- Use MC to simultaneously fit R_{ν}^{exp} and $R_{\overline{\nu}}^{exp}$ to $sin^2\theta_W$ and m_c , and $sin^2\theta_W$ and ρ

$$\mathsf{R}^{\nu(\overline{\nu})} = \frac{\sigma_{\mathsf{NC}}^{\nu(\overline{\nu})}}{\sigma_{\mathsf{CC}}^{\nu(\overline{\nu})}} = \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{\mathsf{W}} + \frac{5}{9}\sin^{4}\theta_{\mathsf{W}} \left(1 + \frac{\sigma_{\mathsf{CC}}^{\overline{\nu}(\nu)}}{\sigma_{\mathsf{CC}}^{\nu(\overline{\nu})}}\right)\right)$$

- R^v Sensitive to sin² θ_W while R \bar{v} isn't, so R^v is used to extract sin² θ_W and R \bar{v} to control systematics
- Single parameter fit, using SM values for EW parameters (ρ_0 =1)

 $\sin^2 \theta_w = 0.2277 \pm 0.0013 \text{ (stat)} \pm 0.0009 \text{ (syst)}$

m_c = 1.32 \pm 0.09 (stat) \pm 0.06 (syst) w/m_c = 1.38 \pm 0.14 GeV/c² as input

NuTeV sin² θ_{W} Uncertainties

	V V		
Source of Uncertainty	δ sin²θ _w	Dominant	
Statistical	0.00135	uncertainty	
v_{e} flux	0.00039	1-Loop Electroweak Radiative Corrections based on Bardin, Dokuchaeva JINR-E2-86-2 60 (1986)	
Event Length	0.00046		
Energy Measurements	0.00018		
Total Experimental Systematics	0.00063		
CC Charm production, sea quarks	0.00047		
Higher Twist	0.00014		
Non-isoscalar target	0.00005	δsin ² θ ^(On-shell) _w = -0.00022 × $\left(\frac{M_t^2 - (175 \text{GeV})^2}{2}\right)^2$	
$\sigma^{\overline{ u}}/\sigma^{ u}$	0.00022	$(50 \text{GeV})^2$	
RadiativeCorrection	0.00011	$+0.00032 \times \ln\left(\frac{M_{H}}{10000000000000000000000000000000000$	
R _L	0.00032	(150GeV)	
Total Physics Model Systmatics	0.00064		
Total Systematic Uncertainty	0.00162		
∆M _w (GeV/c²)	0.08		
Wednesday, Jan. 31, 2007	PHYS 5326, Spring Jae Yu	2007 21	

NuTeV vs CCFR Uncertainty Comparisons

Comparison of New $sin^2\theta_W$

$$\begin{split} \sin^2\theta_W^{\text{On-Shell}} &= 0.2277 \pm 0.0013 \text{ (stat)} \pm 0.0009 \text{ (syst)} \\ &\quad \sin^2\theta_W^{\text{On-Shell}} = 1 - \frac{M_W^2}{M_Z^2} \\ &\implies M_W^{\text{On-Shell}} = 80.14 \pm 0.08 \text{ GeV/c}^2 \end{split}$$

Comparable precision but value smaller than other measurements W-Boson Mass [GeV]

23