PHYS 5326 – Lecture #5

Monday, Feb. 12, 2007 Dr. Jae Yu

ILC News from Beijing
 Interpretation of sin²θ_W
 sin²θ_W link to Higgs

ILC RDR from Beijing

- Global Design Effort (GDE) headed by Barry Barish of CalTech completed a Reference Design Report (RDR)
 - Worldwide group working on ILC machine design
 - Defines the baseline design of the ILC and provides the cost estimate for an ILC
- Baseline design parameters
 - CMS Energy: 200 500GeV scannable
 - Total length: 31km
 - Luminosity: $\mathcal{L} = 2 \times 10^{34} \, cm^{-2} s^{-1}$

- Single interaction region two detector in push-pull mode

ILC RDR from Beijing

- Baseline cost estimate
 - ILC Value units to provide cost in universally understandable price
 - Lowest reasonable price for required quality
 - Shared cost: \$4.87B
 - Site specific cost: \$1.78B
 - This is the cost for tunneling, foundation, geological issues, etc
 - Labor cost: 13,000 Man-years
 - Not included in the cost estimate
 - Engineering design, preparation cost for R&D
 - Detectors and associated R&D
 - Contingencies for risks
 - Escalation (inflation)

ILC RDR from Beijing

- The next steps
 - Engineering design report by 2010
 - Should include complete design of the machine except for the site specific portion of it
 - Refined cost estimate
 - Accept expression of interest (EOI) for hosting the ILC from countries from now till 2011
 - Site selection process begins shortly as EOI's collected
 - Construction of the machine begins 2011 or so
- Detector R&D and selection should complete by 2010 – 2011 time scale

MC to Relate R_v^{exp} to R^v and $sin^2\theta_W$

- Parton Distribution Model
 - − Correct for details of PDF model → Used CCFR data for PDF
 - To minimize systematic effects
 - Model cross over from short v_{μ} CC events

CCFR Data

MC to Relate R_v^{exp} to R^v and $sin^2\theta_W$

- Neutrino Fluxes
 - $-v_{\mu}v_{e}, v_{\mu}, v_{e}$ in the two running modes
 - ν_{e} CC events always look short
- Shower length modeling
 - Correct for short events that look long
- Detector response vs energy, position, and time
 - Continuous testbeam running minimizes systematics

$sin^2\theta_W\, Fit \ to \ R_\nu^{\ exp} \ and \ R \ \frac{-exp}{\nu}$

- Thanks to the separate beam \rightarrow Measure R^v's separately
- Use MC to simultaneously fit ${\rm I\!R}_{\nu}^{\rm exp}$ and ${\rm I\!R}_{\bar{\nu}}^{\rm exp}$ to $sin^2\theta_W$ and $m_c,$ and $sin^2\theta_W$ and ρ

$$\mathbf{R}^{\nu(\overline{\nu})} = \frac{\sigma_{NC}^{\nu(\overline{\nu})}}{\sigma_{CC}^{\nu(\overline{\nu})}} = \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{W} + \frac{5}{9}\sin^{4}\theta_{W} \left(1 + \frac{\sigma_{CC}^{\overline{\nu}(\nu)}}{\sigma_{CC}^{\nu(\overline{\nu})}} \right) \right)$$

• R^{v} Sensitive to $sin^{2}\theta_{W}$ while $R^{\overline{v}}$ isn't $\Rightarrow R^{v}$ is used to extract $sin^{2}\theta_{W}$ and $R^{\overline{v}}$ to control systematics $\Rightarrow Why???$

$sin^2\theta_W\,Fit$ to $R_{\nu}^{\ exp}$ and $R_{\ \nu}^{\ -exp}$

- Single parameter fit, using SM values for EW parameters (ρ_0 =1)

$$sin^2 \theta_w = 0.2277 \pm 0.0013 (stat) \pm 0.0009 (syst)$$

 $m_c = 1.32 \pm 0.09 \text{ (stat)} \pm 0.06 \text{ (syst)} \Rightarrow m_c = 1.38 \pm 0.14 \text{ GeV/c}^2 \text{ as input}$

•Two parameter fit for $\text{sin}^2\theta_{\text{W}} \, \text{and} \, \rho_0$ yields

$$sin^2 \theta_w = 0.2265 \pm 0.0031$$

Syst. Error dominated since we cannot take advantage of sea quark cancellation

$$\rho_0 = 0.9983 \pm 0.040$$

NuTeV sin² θ_{W} Uncertainties

NuTeV vs CCFR Uncertainty Comparisons

Tree-level Parameters: ρ_0 and $\text{sin}^2\theta_{\text{W}}^{(\text{on-shell})}$

- Either $\text{sin}^2\theta_{\text{W}}^{(\text{on-shell})}$ or ρ_0 could agree with SM but both agreeing simultaneously is unlikely

Model Independent Analysis

• $R^{v(\overline{v})}$ can be expressed in terms of quark couplings:

$$R^{\nu(\overline{\nu})} \equiv \frac{\sigma\left(\stackrel{(-)}{\nu} N \rightarrow \stackrel{(-)}{\nu} X\right)}{\sigma\left(\stackrel{(-)}{\nu} N \rightarrow \ell^{-(+)} X\right)} = g_{L}^{2} + r^{(-1)}g_{R}^{2}$$
Where $r \equiv \frac{\sigma\left(\overline{\nu}N \rightarrow \ell^{-(+)} X\right)}{\sigma\left(\nu N \rightarrow \ell^{-(+)} X\right)} \approx \frac{1}{2}$

Paschos-Wolfenstein formula can be expressed as

$$\mathsf{R}^{-} = \frac{\sigma_{\mathsf{NC}}^{\mathsf{v}} - \sigma_{\mathsf{NC}}^{\overline{\mathsf{v}}}}{\sigma_{\mathsf{CC}}^{\mathsf{v}} - \sigma_{\mathsf{CC}}^{\overline{\mathsf{v}}}} = \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{\mathsf{W}}\right) = \frac{\mathsf{R}^{\mathsf{v}} - \mathsf{r}\mathsf{R}^{\overline{\mathsf{v}}}}{1 - \mathsf{r}} = \mathsf{g}_{\mathsf{L}}^{2} - \mathsf{g}_{\mathsf{R}}^{2}$$

Model Independent Analysis

- Performed a fit to quark couplings (and g_L and g_R)
 - For isoscalar target, the νN couplings are

$$g_{L}^{2} = u_{L}^{2} + d_{L}^{2} = \rho_{0}^{2} \left(\frac{1}{2} - \sin^{2}\theta_{W} + \frac{5}{9}\sin^{4}\theta_{W} \right)$$
$$g_{R}^{2} = u_{R}^{2} + d_{R}^{2} = \rho_{0}^{2} \frac{5}{9}\sin^{4}\theta_{W}$$

– From two parameter fit to \mathbf{R}_{ν}^{exp} and $\mathbf{R}_{\overline{\nu}}^{exp}$

 $g_{L}^{2} = 0.3005 \pm 0.0014$ (SM: 0.3042 **-**2.6 σ deviation)

 $g_R^2 = 0.0310 \pm 0.0011$ (SM: 0.0301 **Agreement**)

Model Independent Analysis

What is the discrepancy due to (Old Physics)?

- R⁻ technique is sensitive to q vs q differences and NLO effect
 - Difference in valence quark and anti-quark momentum fraction
- Isospin symmetry assumption might not be entirely correct
 - Expect violation about 1%
 - \rightarrow NuTeV reduces this effect by using the ratio of v and \overline{v} cross sections
 - \rightarrow Reducing dependence by a factor of 3

What is the discrepancy due to (Old Physics)?

- s vs s quark asymmetry
 - s and s needs to be the same but the momentum could differ
 - A value of Δs=xs -x s ~+0.002 could shift sin²θ_W by -0.0026, explaining ½ the discrepancy (S. Davison, et. al., hep-ph/0112302)
 - NuTeV di- μ measurement shows that $\Delta s{\sim}{-}0.0027{+}/{-}0.0013$

Use opposite sign $di-\mu$ events to measure s and \overline{s} .

What is the discrepancy due to (Old Physics)?

- NLO and PDF effects
 - PDF, m_c, Higher Twist effect, etc, are small changes
- Heavy vs light target PDF effect (Kovalenko et al., hepph/0207158)
 - Using PDF from light target on Iron target could make up the difference → NuTeV result uses PDF extracted from CCFR (the same target)

$\nu_{e} { \rightarrow } \nu_{s}$ Oscillations with Large M_{ν}

- LSND result implicate a large Δm^2 (~10 100eV²) solution for v_e oscillation \rightarrow MiniBooNe at FNAL is running to put the nail on the coffin
- How would this affect NuTeV sin² θ_W ?

$$\sin^{2}\theta_{W} = \frac{1}{2} - \frac{R^{v} - rR^{\overline{v}}}{1 - r} \quad \text{and} \quad R^{v} = \frac{N_{\text{Short}}^{v} - N_{v_{e}}^{MC}}{N_{\text{Long}}^{v}}$$
$$v_{e} \rightarrow v_{s} \text{ with } P_{v_{e} \rightarrow v_{s}} \quad \text{then } N_{v_{e}} = N_{v_{e}}^{MC} P_{v_{e} \rightarrow v_{e}} = N_{v_{e}}^{MC} \left(1 - P_{v_{e} \rightarrow v_{s}}\right)$$

Thus, MC will subtract more than it is in nature, causing measured R^v to be smaller and thereby increasing $\text{sin}^2\theta_W$

lf

New Physics: Interactions from Extra U(1) - Z'

- Extra U(1) gauge group giving rise to interactions mediated by heavy Z' boson (M_{Z'}>>M_Z)
- While couplings in these groups are arbitrary, E(6) gauge groups can provide mechanism for extra U(1) interaction via heavy Z'.
- Can give rise to g_R but not g_L which is strongly constrained by precision Z measurement

What other explanations (New Physics)?

- Heavy non-SM vector boson exchange: Z', LQ, etc
 - Suppressed Z_{VV} (invisible) coupling
 - LL coupling enhanced than LR needed for NuTeV

What other explanations (New Physics)?

- Propagator and coupling corrections
 - Small compared to the effect
- MSSM : Loop corrections wrong sign and small for the effect
- Many other attempts in progress but so far nothing seems to explain the NuTeV results
 - Lepto-quarks
 - Contact interactions with LL coupling (NuTeV wants m_z,~1.2TeV, CDF/DØ: m_z,>700GeV)
 - Almost sequential Z' with opposite coupling to $\boldsymbol{\nu}$

Langacker *et al*, Rev. Mod. Phys. **64** 87; Cho *et al.*, Nucl. Phys. **B531**, 65; Zppenfeld and Cheung, hep-ph/9810277; Davidson et al., hep-ph/0112302

Linking sin² θ_W with Higgs through M_{top} vs M_W

Homework Assignments

- Draw a few additional Feynman diagrams for higher order GSW corrections to v-N scattering at the same order as those on pg 4 of the previous lecture
 - Due: One week from today, Mon., Feb. 19

