PHYS 5326 – Lecture #6

Wednesday, Feb. 14, 2007 Dr. Jae Yu

1. Neutrino Oscillation Formalism

2. Neutrino Oscillation Measurements

- 1. Solar Neutrinos
- 2. Atmospheric neutrinos
- 3. Accelerator Based Oscillation Experiments

Neutrino Oscillation

- First suggestion of neutrino mixing by B. Pontecorvo to explain K⁰, K⁰-bar mixing in 1957
- Solar neutrino deficit in 1969 by Ray Davis in Homestake Mine in SD. → Called MSW (Mikheyev-Smirnov-Wolfenstein) effect
 - Describes neutrino flavor conversion in medium
- Caused by the two different eigenstates for mass and weak
- Oscillation probability depends on
 - The distance between the source and the observation point
 - The energy of the neutrinos
 - The difference in square of the masses

Neutrino Oscillation Formalism

• Two neutrino mixing case:

 $\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \text{ OR } \quad \begin{vmatrix} v_e \rangle = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle \\ |v_\mu\rangle = -\sin\theta |v_1\rangle + \cos\theta |v_2\rangle$

where $|v_{e}\rangle$ and $|v_{\mu}\rangle$ are weak eigenstates, while $|v_{1}\rangle$ and $|v_{2}\rangle$ are mass eigenstates, and θ is the mixing angle that gives the extent of mass eigenstate mixture, analogous to Cabbio angle

Oscillation Probability

• Let v_{μ} at time t=0 be the linear combination of v_1 and v_2 with masses m_1 and m_2 , the wave function becomes:

$$|v_{\mu}(t=0)\rangle = -\sin\theta |v_{1}\rangle + \cos\theta |v_{2}\rangle$$

• Then later time t the v_{μ} wave function becomes:

$$|v_{\mu}(t)\rangle = -\sin\theta \exp\left[-i\left(\frac{E_{1}}{\hbar}t\right)\right]|v_{1}\rangle + \cos\theta \exp\left[-i\left(\frac{E_{2}}{\hbar}t\right)\right]|v_{2}\rangle$$

• For relativistic neutrinos ($E_v >> m_i$), the energies of the mass eigenstates are:

$$E_k = \sqrt{p^2 + m_k^2} \cong p + \frac{m_k^2}{2p}$$

Oscillation Probability

• Substituting the energies into the wave function:

$$\left|\nu_{\mu}(t)\right\rangle = \exp\left[-it\left(p + \frac{m_{1}^{2}}{2E_{\nu}}\right)\right]\left[-\sin\theta\left|\nu_{1}\right\rangle + \cos\theta\left|\nu_{2}\right\rangle\exp\left[\frac{i\Delta m^{2}t}{2E_{\nu}}\right]\right]$$

where $\Delta m^2 \equiv m_1^2 - m_2^2$ and $E_{\nu} \cong p$.

- Since the v's move at the speed of light, t=x/c, where x is the distance to the source of v_{μ} .
- The probability for ν_μ with energy E_ν oscillates to ν_e at the distance \pounds from the source becomes

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$

Why is Neutrino Oscillation Important?

- Neutrinos are one of the fundamental constituents in nature
 - Three weak eigenstates based on SM
- Left handed particles and right handed anti-particles only
 - Violates parity \rightarrow Why only neutrinos?
 - Is it because of its masslessness?
- SM based on massless neutrinos
- Mass eigenstates of neutrinos makes flavors to mix
- SM in trouble...
- Many experimental results showing definitive evidences of neutrino oscillation
 - SNO giving 5 sigma results

$\boldsymbol{\nu}$ Sources for Oscillation Experiments

- Must have know the flux by the species
 - Why?
- Natural Sources
 - Solar neutrinos
 - Atmospheric neutrinos
- Manmade Sources
 - Nuclear Reactor
 - Accelerator

Oscillation Detectors

- The most important factor is the energy of neutrinos and its products from interactions
- Good particle ID is crucial
- Detectors using natural sources
 - Deep underground to minimize cosmic ray background
 - Use Čerenkov light from secondary interactions of neutrinos
 - $v_e + N \rightarrow e+X$: electron gives out Čerenkov light
 - v_{μ} CC interactions, resulting in muons with Čerenkov light
- Detectors using accelerator made neutrinos
 - Look very much like normal neutrino detectors
 - Need to increase statistics

Solar Neutrinos

- Result from nuclear fusion process in the Sun
- Primary reactions and the neutrino energy from them are:

Name	Reaction	E_v End point (MeV)
рр	$p+p \rightarrow D+e^++v_e$	0.42
рер	$p+e^-+p \rightarrow D+v_e$	1.44
⁷ Be	$^{7}Be+e^{-}\rightarrow^{7}Li+v_{e}$	0.86
⁸ B	$^{8}B \rightarrow 2(^{4}He) + e^{+} + v_{e}$	15

Solar Neutrino Energy Spectrum

Comparison of Theory and Experiments

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Sudbery Neutrino Observatory (SNO)

Sudbery mine, Canada
6800 ft underground
12 m diameter acrylic vessel
1000 tons of D₂O
9600 PMT's

Wednesday, Feb. 14, 2001

SNO v_e Event Display

Solar Neutrino Flux

SNO First Results

Atmospheric Neutrinos

- Neutrinos resulting from the atmospheric interactions of cosmic ray particles
 - $-\ \nu_{\mu}$ to ν_{e} is about 2 to 1
 - He, p, etc + N $\rightarrow \pi$,K, etc
 - $\pi \rightarrow \mu + \nu_{\mu}$
 - $\mu \rightarrow e + v_e + v_\mu$
 - This reaction gives 2 ν_{μ} and 1 ν_{e}
- Expected flux ratio between ν_{μ} and ν_{e} is 2 to 1

PHYS 5326, Spring

Jae Yu

Form a double ratio for the measurement

Super Kamiokande

- •Kamioka zinc mine, Japan
- •1000m underground
- •40 m (d) x 40m(h) SS
- •50,000 tons of ultra pure H_2O
- •11200(inner)+1800(outer) 50cm PMT's
- •Originally for proton decay experiment
- •Accident in Nov. 2001,
- destroyed 7000 PMT's
 - •Virtually all PMT's below the surface of the water
- •Dec. 2002 resumed data taking

Photo-multiplier Tube

- The dynodes accelerate the electrons to the next stage, amplifying the signal to a factor of $10^4 10^7$
- Quantum conversion efficiency of photocathode is typically on the order of 0.25
- Output signal is proportional to the amount of the incident light except for the statistical fluctuation
- Takes only a few nano-seconds for signal processing
- Used in as trigger or in an environment that requires fast response
- Scintillator+PMT good detector for charged particles or photons or neutrons

Some PMT's

Homework Assignments

- Complete the derivation of the probability for ν_{μ} of energy E_{ν} to oscillate to ν_{e} at the distance \pounds away from the source of ν_{μ} .
- Draw the oscillation probability distributions as a function of
 - Distance $\[tmu]$ for a fixed neutrino beam energy E $_{_{\rm V}}$ (=5, 50, 150 GeV)
 - $E_{\rm v}$ for a detector at a distance \pounds (=1.5, 735, 2200km) away from the source
- Due Wednesday, Feb. 21

