PHYS 5326 – Lecture #7

Monday, Feb. 19, 2007 Dr. Jae Yu

- 1. Neutrino Oscillation Experiments
- 2. Long Base Line Experiments
- 3. Short Base Line Experiments
- 4. Future Projects

Neutrino Oscillation

- First suggestion of neutrino mixing by B. Pontecorvo to explain K⁰, K⁰-bar mixing in 1957
- Solar neutrino deficit in 1969 by Ray Davis in Homestake Mine in SD. → Called MSW (Mikheyev-Smirnov-Wolfenstein) effect
 - Describes neutrino flavor conversion in medium
- Caused by the two different eigenstates for mass and weak
- Neutrinos change their flavor as they travel
 Neutrino flavor mixing
- Oscillation probability depends on
 - The distance between the source and the observation point
 - The energy of the neutrinos
 - The difference in square of the masses

Oscillation Probability

• Substituting the energies into the wave function:

$$\left|\nu_{\mu}(t)\right\rangle = \exp\left[-it\left(p + \frac{m_{1}^{2}}{2E_{\nu}}\right)\right]\left[-\sin\theta\left|\nu_{1}\right\rangle + \cos\theta\left|\nu_{2}\right\rangle\exp\left[\frac{i\Delta m^{2}t}{2E_{\nu}}\right]\right]$$

where $\Delta m^2 \equiv m_1^2 - m_2^2$ and $E_{\nu} \cong p$.

- Since the v's move at the speed of light, t=x/c, where x is the distance to the source of v_{μ} .
- The probability for ν_μ with energy E_ν oscillates to ν_e at the distance \pounds from the source becomes

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{1.27\Delta mL}{E_{\nu}}\right)$$

Monday, Feb. 19, 2007

Atmospheric Neutrinos

- Neutrinos resulting from the atmospheric interactions of cosmic ray particles
 - $-\ \nu_{\mu}$ to ν_{e} is about 2 to 1
 - He, p, etc + N $\rightarrow \pi$,K, etc
 - $\pi \rightarrow \mu + \nu_{\mu}$
 - $\mu \rightarrow e + v_e + v_\mu$
 - This reaction gives 2 ν_{μ} and 1 ν_{e}
- Expected flux ratio between ν_{μ} and ν_{e} is 2 to 1
- Form a double ratio for the measurement

$$R \equiv \frac{\left(\begin{array}{c} N_{\nu_{e}} \\ N_{\nu_{e}} \end{array}\right)^{E \times p}}{\left(\begin{array}{c} N_{\nu_{e}} \\ N_{\nu_{\mu}} \end{array}\right)^{T h e}}$$

Super Kamiokande

- •Kamioka zinc mine, Japan
- •1000m underground
- •40 m (d) x 40m(h) SS
- •50,000 tons of ultra pure H_2O
- •11200(inner)+1800(outer) 50cm PMT's
- •Originally for proton decay experiment
- •Accident in Nov. 2001,
- destroyed 7000 PMT's
 - •Virtually all PMT's below the surface of the water
- •Dec. 2002 resumed data taking

Monday, Feb. 19, 2007

Monday, Feb. 19, 2007

PHYS 5326, Spring 2007 Jae Yu

Super-K Event Displays

Monday, Feb. 19, 2007

PHYS 5326, Spring 2007 Jae Yu

Other Experimental Results

Accelerator Based Experiments

- Mostly ν_{μ} from accelerators
- Long and Short baseline experiments
 - Long baseline: Detectors located far away from the source, assisted by a similar detector at a very short distance (eg. MINOS: 730km, K2K: 250km, etc)
 - Compare the flux measured in the near detector with that in the far detector, taking into account angular dispersion
 - Short baseline: Detectors located at a close distance to the source
 - Need to know beam flux well
 - Better if only one neutrino species are contained in the beam
 - Neutrinos from reactors are good candidates

Long Baseline Experiment Concept (K2K)

Different Neutrino Oscillation Strategies

Exclusion Plots

Long Baseline Experiments

- Baseline length over a few hundred km
- Neutrino energies can be high
- Experiments and Facilities

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$

- Fermilab (to Soudan Underground Facility):
 - MINOS: Main Injector Neutrino Oscillation Search (L=730km)
 - Nova: Off axis neutrino appearance experiment ($v_{\mu} \rightarrow v_{e}$)

Jae Yu

- New Neutrino Oscillation Experiment at Soudan (Emulsion+iron) → Tau appearance
- BNL: A proposal to shoot neutrinos to WIPP/or Homestake

MINOS (Main Injector Neutrino Oscillation Search)

- Receives beam from NuMI (Neutrino at Main Injector) facility
- Located in the Soudan mine in Minnesota, 800m underground
- Detector consists of iron and scintillation counters, weighing a total of 5400 tons
- 9000 neutrino events/year expected

Long Baseline Experiment Cont'd

- CERN (CNGS, CERN Neutrinos to Grand Sasso):
 - Baseline length, L=730km
 - ICANOE (Ring Imaging Cerenkov Detector)
 - ICARUS (LAr Cerenkov detector)
 - $V_{\mu} \rightarrow V_{\tau}; V_{\mu} \rightarrow V_{e}$
 - − OPERA (ν_{μ} → ν_{τ}): Lead+Emulsion, start taking data in Aug. 2006
 - NOE (Neutrino Oscillation Experiment)
- Japan:
 - K2K: KEK to Kamioka Mine (L=250km)
 - T2K: J-PARC at Tokai to Kamioka (L=295km)

Chooz

- Nuclear reactor Long Base Line experiment
- Look for neutrino oscillation from the disappearance in $\overline{\nu_e} \rightarrow \overline{\nu_e}$
- The detector used Cerenkov light in liquid scintillator (mineral oil)
- The experiment is completed
- The final paper published in 1999
- Will continue with mixing angle measurement experiment at Double-Chooz

KamLAND – Kamioka Liquid scintillator Anti -Neutrino Detector

- Reactor and solar neutrino long baseline experiment
- Located in the old Kamiokande detector cavern 1000m underground
- 1000 ton liquid scintillator detector w/ good $\overline{\nu}_{a}$ detection.
- The experiment is completed
- Taking data

K2K – KEK to Kamioka

- Send neutrino beam from KEK's proton synchrotron to Super-Kamiokande detector
- What are they looking for?
 - v_{μ} disappearance
 - $-v_e$ appearance
- K2K-II started data taking in Jan. 2004
- Based line length: 250km
- Compare measured flux at the near detector with that measured at the far detector
- Crucial to know the beam flux

Latest ν Oscillation Results From K2K and MINOS

Useful Links for Neutrinos Oscillations

- General summary: <u>http://www.nu.to.infn.it/</u>
- <u>http://www.hep.anl.gov/ndk/hypertext/nuindustry.</u>
 <u>html</u>
- http://www.ps.uci.edu/~superk/oscillation.html
- <u>http://wwwlapp.in2p3.fr/neutrinos/ankes.html</u>

Homework Assignments

- Complete the derivation of the probability for v_{μ} of energy E_{ν} to oscillate to v_{e} at the distance \mathcal{L} away from the source of v_{μ} .
- Draw the oscillation probability distributions as a function of
 - Distance $\[tmu]$ for a fixed neutrino beam energy E $_{_{\rm V}}$ (=5, 50, 150 GeV)
 - $E_{\rm v}$ for a detector at a distance \pounds (=1.5, 735, 2200km) away from the source
- Due Wednesday, Feb. 21

