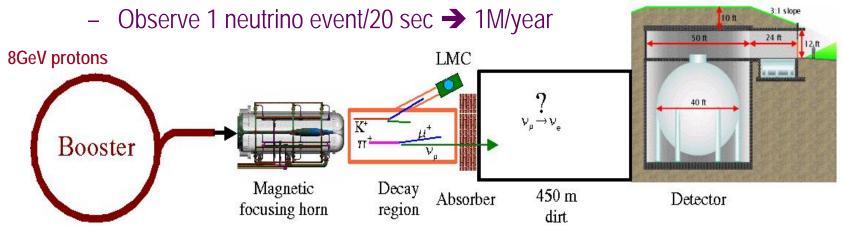
PHYS 5326 – Lecture #8

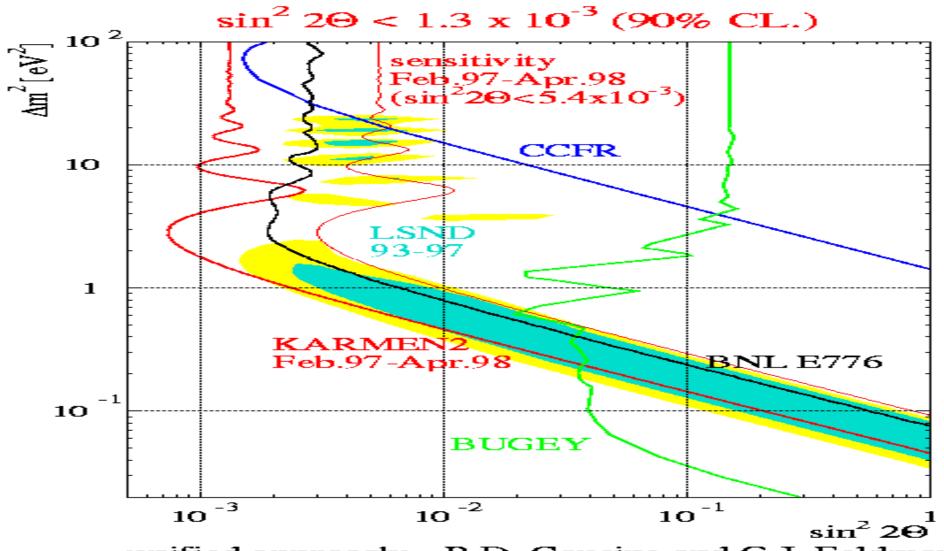
Wednesday, Feb. 21, 2007 Dr. Jae Yu

- 1. Short Base Line Experiments
- 2. Future Neutrino Oscillation Projects
- 3. Local Gauge Invariance and Introduction of Massless Vector Gauge Field

Short Baseline Experiments


- Baseline less than a few km
- Neutrino energies need to be low

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta \sin^{2} \left(\frac{1.27\Delta m^{2}L}{E_{\nu}}\right)$$


- Experiments and laboratories
 - CERN, Geneva: NOMAD, CHORUS,
 - Fermilab: BooNE, COSMOS (rejected)
 - Los Alamos: LSND (Completed)
 - Rutherford, UK: KARMEN
 - Oak Ridge: ORLanD (Using spallation neutrino source)

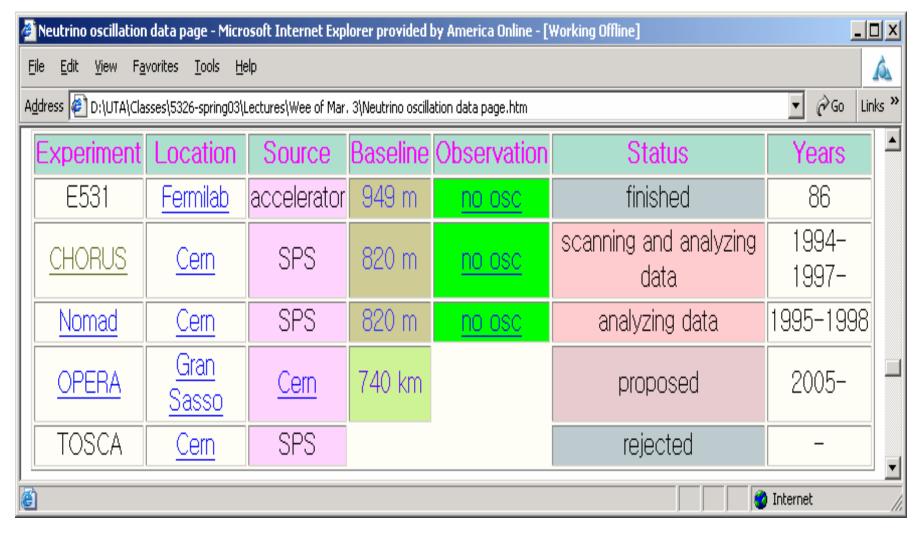
MiniBooNE (Booster Neutrino Experiment)

- A short base line experiment
- Goal: To investigate the signal from LSND on $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillation at $\Delta m^2 \sim 1 eV^2$
 - A bit contradictory to Super-K results
 - Measure oscillation properties
- Uses 8GeV protons from Fermilab's Booster on a target embedded in a Horn magnet
- Started commissioning in 2003 and is taking data now
- Use Cerenkov light in a liquid scintillator detector
 - 40ft sphere with 800 tons of mineral oil and 1520 PMT's

KARMEN Results

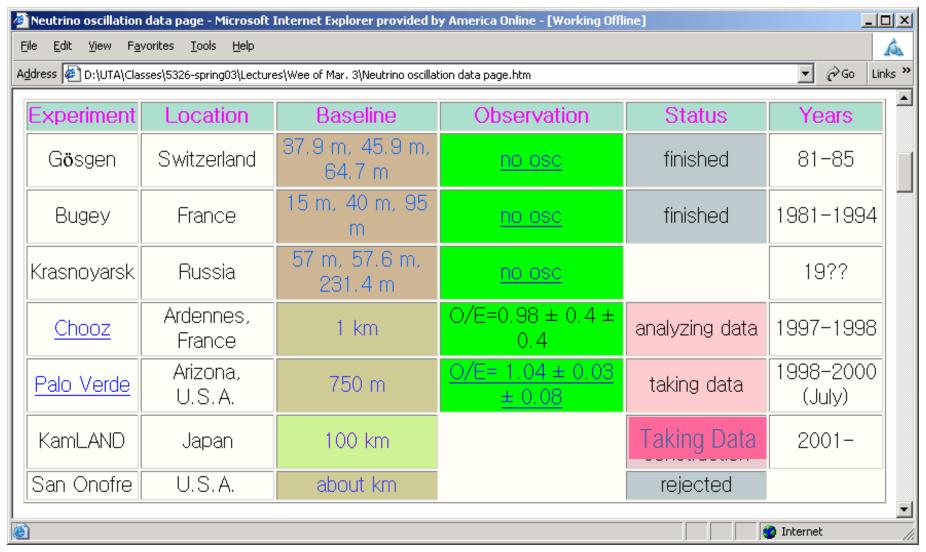
unified approach:

R.D. Cousins and G.J. Feldman Phys. Rev. D57 (1998) 3873


Wednesday, Feb. 21, 2007

PHYS 5326, Spring 2007 Jae Yu

4


Summary of v_{τ} Appearance Experiments

Summary of ν_e Appearance Experiments

Neutrino oscillation data page - Microsoft Internet Explorer provided by America Unline - [Working Uffline] _ File Edit Yiew Favorites Tools Help							
Address D:\UTA\Classes\5326-spring03\Lectures\Wee of Mar. 3\Neutrino oscillation data page.htm							nks »
Experiment	Location	Source	Baseline	Observation	Status	Years	•
BEBC	<u>Cern</u>	SPS		<u>no osc</u>	finished	- 1986?	
CCFR	<u>Fermilab</u>	Tevatron	0.9 km to 1.4 km	no osc	taking data (?)	1990? -	
E776	BNL	AGS	1 km	<u>no osc</u>	finished	85-86	
<u>LSND</u>	Los Alamos	LAMPF proton beam	30 m	excess of $\bar{\nu}_e$: $\frac{40 \pm 9}{\nu_e: 18 \pm 7}$	completed	1994- 1998	
Karmen	Rutherford	ISIS proton beam	18 m	no osc	taking data	1994- 2001	
Nomad	<u>Cern</u>	SPS	820 m	no osc	analyzing data	1995- 1998	
K2K	Kamioka	KEK beam	250 km		taking data	1999-	
Minos	Soudan mine, MS	Main Injector at Fermilab	730 km		under construction	2004-	
miniBooNE	<u>Fermilab</u>	Fermilab Booster	0.5 km/ 1 km		Taking Data	2003-	
NOE	Gran Sasso	<u>Cern</u>	732 km		merged to Icanoe		
<u>lcanoe</u>	Gran Sasso	<u>Cern</u>	732 km		proposed	about 2005	
Cosmos	<u>Fermilab</u>	Main Injector	1 km		rejected		•

v_e Disappearance Experiments

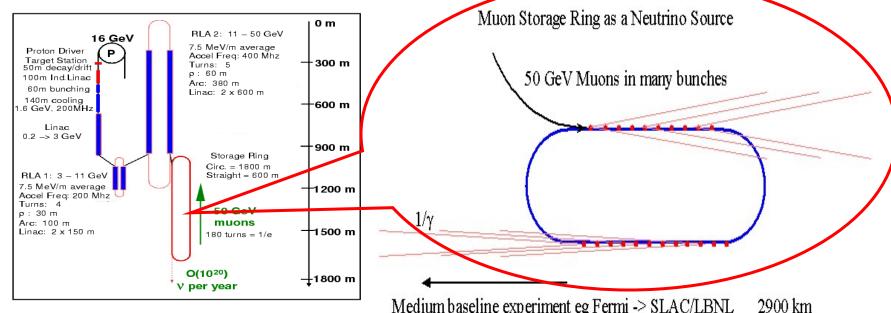
What do we know now?

- We clearly know neutrinos oscillate

 Neutrinos have masses
- It seems that there are three allowed regions of parameters ($\sin^2 2\theta$ and Δm^2) that the current data seem to point
 - LSND ~ $1eV^2$; Super-K ~ $10^{-3} eV^2$, Solar (LMA) ~ $10^{-5} eV^2$
 - There are at least three flavors participating in oscillation
 - $\sin^2 2\theta_{23} \sim 1$ at 90% confidence level
 - $|\Delta m_{32}^2| \sim 2x10^{-3} \text{ eV}^2$
 - $\Delta m_{21}^2 \sim 2x10^{-3} \text{ eV}^2$ (If LMA confirmed)
 - $Sin^2 2\theta_{12} \sim 0.87$ at 90% confidence level (if LMA confirmed)
 - $\sin^2 2\theta_{13} < O(0.1)$

What do we not know?

- Does 3-flavor mixing provide right framework?
 - For CP-violating oscillation, additional neutrino flavors, neutrino decay, etc?
- How many flavors of neutrinos do we have?
- Is $\sin^2 2\theta_{13}$ 0 or small?
- What is the sign of Δm_{32} ?
 - What are the configuration of neutrino masses?
 - What are the actual masses of neutrinos mass eigenstates?
- What are the matter effects?
- Is $\sin^2 2\theta_{23} = 1$?
- While there are a lot of questions and measurements need to be performed, neutrino oscillation provides an exciting new area in HEP.


Other Future Projects

- It is practically accepted that there are neutrino oscillations
 - Many new models are being thought to explain this
- Goals of these experiments are to measure specifics of neutrino oscillations
 - Mixing angles
 - Matter effects
 - Other types of neutrinos, etc
- BNL Neutrino Working Group Accelerator Experiment
- Reactor experiments ($\overline{\nu}_e \rightarrow \overline{\nu}_e$)
 - Braidwood Reactor Experiment
 - Daya Bay Reactor Experiment
 - Diablo Canyon Reactor Experiment
 - KASKA Reactor Experiment
 - Kr2Det Reactor Experiment
 - Reno Experiment

Future: Neutrino Factory

- Spin-off of a muon collider research
 - One a hot, summer day at BNL, the idea of neutrino storage ring popped up

 Future facility using muon storage ring, providing well understood neutrino beam (v_u and v_e) at about 10⁶ times higher intensity

Useful Links for Neutrinos Oscillations

- General summary: http://www.nu.to.infn.it/
- http://www.hep.anl.gov/ndk/hypertext/nuindustry.
 html
- http://www.ps.uci.edu/~superk/oscillation.html
- http://wwwlapp.in2p3.fr/neutrinos/ankes.html