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PHYS 5326 – Lecture #9
Wednesday, Feb. 28, 2007

Dr. Jae Yu

1. Quantum Electro-dynamics (QED)
2. Local Gauge Invariance
3. Introduction of Massless Vector Gauge 

Field 
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Announcements
• First term exam will be on Wednesday, Mar. 7
• It will cover up to what we finish today
• The due for all homework up to last week’s is 

Monday, Mar. 19
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Prologue 
• How is a motion described?

– Motion of a particle or a group of particles can be expressed in
terms of the position of the particle at any given time in classical 
mechanics.

• A state (or a motion) of particle is expressed in terms of 
wave functions that represent probability of the particle 
occupying certain position at any given time in Quantum 
mechanics
– With the operators provide means for obtaining values for 

observables, such as momentum, energy, etc
• A state or motion in relativistic quantum field theory is 

expressed in space and time.
• Equation of motion in any framework starts with 

Lagrangians.
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Non-relativistic Equation of Motion for Spin 0 Particle
Energy-momentum relation in classical mechanics give

2
V E

m
+ =

p 2

provides the non-relativistic equation of motion for field, ψ, 
the Schrödinger Equation

Quantum prescriptions;                                  .,
i

→ ∇p

2

2
V i

m t
∂Ψ

− ∇ Ψ + Ψ =
∂

2

2Ψ represents the probability of finding the 
particle of mass m at the position (x,y,z)      

E i
t
∂

→
∂
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Relativistic Equation of Motion for Spin 0 Particle
Relativistic energy-momentum relationship

2 2 2 2 4E c m c− = ⇒p
With four vector notation of quantum prescriptions; 

Relativistic equation of motion for field, ψ, the Klein-Gordon Equation

p
iµ µ→ ∂

2 2 2 0m cµ
µ− ∂ ∂ Ψ − Ψ =

22
2

2 2

1 m c
c t

∂ Ψ ⎛ ⎞− + ∇ Ψ = Ψ⎜ ⎟∂ ⎝ ⎠
2nd order 
in time

2 2 0p p m cµ
µ − =

0 1 2 3
1   ;    ,   ,   ,    

x c t x y zµ µ

⎛ ⎞∂ ∂ ∂ ∂ ∂
∂ ≡ ∂ = ∂ = ∂ = ∂ =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

where
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Relativistic Equation of Motion (Dirac Equation) for 
Spin 1/2 Particle

To avoid 2nd order time derivative term, Dirac attempted to 
factor relativistic energy-momentum relation

2 2 0p p m cµ
µ − =

This works for the case with zero three momentum

( ) ( )( )20 2 2 0 0 0p m c p mc p mc− = + − =

This results in two first order equations
0 0p mc+ =
0 0p mc− =
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The previous prescription does not work for the case with non-0 three 
momentum

2 2p p m cµ
µ − =

The terms linear to momentum should disappear,  so              k kβ γ=
To make it work, we must find coefficients γk to satisfy:

k
kp p p pµ λ

µ λγ γ=

( ) ( ) ( ) ( )2 2 2 20 1 2 3p p p p− − −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 20 0 1 1 2 2 3 3p p p pγ γ γ γ= + + +

( ) ( ) ( )0 1 1 0 0 2 2 0 0 3 3 0
0 1 0 2 0 3p p p p p pγ γ γ γ γ γ γ γ γ γ γ γ+ + + + + + +Other Cross Terms

( )( )k
kp mc p mcλ

λβ γ+ − =

( ) 2 2k k k
k kp p mc p m cλ

λβ γ β γ− − −

Dirac Equation Continued…

The coefficients like γ0=1 and γ1= γ2= γ3=i do not work since they do 
not eliminate the cross terms.
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Dirac Equation Continued…
It would work if these coefficients are matrices that satisfy the conditions 

Using gamma matrices with the standard Bjorken and Drell convention

( )20 1,  γ = Or using 
Minkowski
metric, gµν0  when µ ν ν µγ γ γ γ µ ν+ = ≠

( ) ( ) ( )2 2 21 2 3 1γ γ γ= = = −
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

gµν

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

{ },

2g

µ ν

µ ν ν µ

µν

γ γ

γ γ γ γ

=

+ = where 

Where σi are Pauli spin matrices

0 1 0
0 1

γ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

0
0

i
i

i

σ
γ

σ
⎛ ⎞

= ⎜ ⎟
−⎝ ⎠

1

0 1
,

1 0
σ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥= ⎢ ⎥−⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

2

0
,

0
i

i
σ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

3

1 0
0 1

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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Dirac Equation Continued…
Using Pauli matrix as components in coefficient matrices whose smallest 

size is 4x4, the energy-momentum relation can now be factored
2 2p p m cµ

µ − =

w/ a solution               0p mcλ
λγ − =

By applying quantum prescription of momentum            p iµ µ→ ∂

Acting the 1-D solution on a wave 
function, ψ, we obtain Dirac equation 0ki mcµγ ψ ψ∂ − =

( )( ) 0k
kp mc p mcλ

λγ γ+ − =

1

2

3

4

ψ
ψ

ψ
ψ
ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

where Dirac spinor, ψ
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Euler-Lagrange Equation
For a conservative force, the force can be expressed as 

the gradient of the corresponding scalar potential, U

F U= −∇
Therefore the Newton’s law can be written                      .dvm U

dt
= −∇

i
i

d L L
dt qq

•

⎛ ⎞∂ ∂⎜ ⎟ =
⎜ ⎟ ∂∂⎝ ⎠

The 1-D Euler-Lagrange fundamental equation of motion       

Starting from Lagrangian 21
2

L T U m v U= − = −

1

x
x

L dT m v
dvq

•

∂
= =

∂In 1D Cartesian 
Coordinate system

1

L U
q x
∂ ∂

= −
∂ ∂
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Euler-Lagrange equation in QFT
Unlike particles, field occupies regions of space.  

Therefore in field theory, the motion is expressed 
in terms of space and time.

Euler-Larange equation for relativistic fields 
is, therefore, 

( ) ii

L L
µ

µ φφ

⎛ ⎞∂ ∂
⎜ ⎟∂ =
⎜ ⎟ ∂∂ ∂⎝ ⎠Note the four 

vector form
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Klein-Gordon Largangian for scalar (S=0) Field
For a single, scalar field φ, the Lagrangian is

( )( )
2

21 1
2 2

mcµ
µφ φ φ⎛ ⎞= ∂ ∂ − ⎜ ⎟

⎝ ⎠
L

2

0m cµ
µ φ φ⎛ ⎞∂ ∂ + =⎜ ⎟

⎝ ⎠

From the Euler-Largange equation, we obtain 

Since ( ) i
i

µ

µ

φ
φ

∂
= ∂

∂ ∂
L

and 
2

i
i

m c φ
φ
∂ ⎛ ⎞= − ⎜ ⎟∂ ⎝ ⎠

L

This equation is the Klein-Gordon equation describing a 
free, scalar particle (spin 0) of mass m.
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Dirac Largangian for Spinor (S=1/2) Field
For a spinor field ψ, the Lagrangian

( ) ( )2i c mcµ
µψγ ψ ψψ= ∂ −L

0m ci µ
µγ ψ ψ⎛ ⎞∂ − =⎜ ⎟

⎝ ⎠

From the Euler-Largange equation for ⎯ψ, we obtain 

Since ( )
0

µψ
∂

=
∂ ∂

L
and ( ) 2i c m cµ

µγ ψ ψ
ψ
∂

= ∂ −
∂

L

Dirac equation for a particle of spin ½ and mass m.
How’s Euler Lagrangian equation looks like for ψ?
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Proca Largangian for Vector (S=1) Field
Suppose we take the Lagrangian for a vector field Aµ

( )( )
21 1

16 8
mcA A A A A Aµ ν ν µ ν

µ ν ν µ νπ π
⎛ ⎞= − ∂ − ∂ ∂ − ∂ + ⎜ ⎟
⎝ ⎠

L

21 1
16 8

mcF F A Aµν ν
µν νπ π

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

Where Fµν is the field strength tensor in relativistic notation, E and B in 
Maxwell’s equation form an anti-symmetic second-rank tensor 

Fµν

0
0

0
0

x y z

x z y

y z x

z y x

E E E
E B B
E B B
E B B

− − −⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠
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Proca Largangian for Vector (S=1) Field
Suppose we take the Lagrangian for a vector field Aµ

( )( )
21 1

16 8
mcA A A A A Aµ ν ν µ ν

µ ν ν µ νπ π
⎛ ⎞= − ∂ − ∂ ∂ − ∂ + ⎜ ⎟
⎝ ⎠

L

( )
2mcA A Aµ ν ν µ ν

µ
⎛ ⎞∂ ∂ − ∂ + ⎜ ⎟
⎝ ⎠

From the Euler-Largange equation for Aµ, we obtain 

Since ( ) ( )1
4

A A
A

µ ν ν µ

µ ν π
∂

= − ∂ −∂
∂ ∂

L
and 

21
4

mc A
A

ν

ν π
∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

L

For m=0, this equation is for an electromagnetic field.
Proca equation for a particle of spin 1 and mass m.

21 1
16 8

mcF F A Aµν ν
µν νπ π

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

2

0mcF Aµν ν
µ

⎛ ⎞= ∂ + =⎜ ⎟
⎝ ⎠
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Lagrangians
• Lagrangians we discussed are concocted to 

produce desired field equations
– L derived (L=T-V) in classical mechanics
– L taken as axiomatic in field theory

• The Lagrangian for a particular system is not 
unique
– Can always multiply by a constant
– Or add a divergence
– Since these do not affect field equations due to 

cancellations
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Homework
• Prove that Fmn can represent Maxwell’s 

equations, pg. 225 of Griffith’s book.
• Derive Eq. 11.17 in Griffith’s book
• Due is Wednesday, Mar. 7 


