PHYS 5326 — Lecture #9

Wednesday, Feb. 28, 2007
Dr. Jae Yu

1. Quantum Electro-dynamics (QED)
2. Local Gauge Invariance

3. Introduction of Massless Vector Gauge
-leld
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Announcements

o First term exam will be on Wednesday, Mar. 7
o [t will cover up to what we finish today

 The due for all homework up to last week’s Is
Monday, Mar. 19
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Prologue

How IS a motion described?

— Motion of a particle or a group of particles can be expressed In
terms of the position of the particle at any given time in classical
mechanics.

A state (or a motion) of particle is expressed in terms of
wave functions that represent probability of the particle
occupying certain position at any given time in Quantum
mechanics

— With the operators provide means for obtaining values for
observables, such as momentum, energy, etc

* A state or motion in relativistic quantum field theory Is
expressed in space and time.

» Equation of motion in any framework starts with
Lagrangians.
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Non-relativistic Equation of Motion for Spin 0 Particle

Energy-momentum relation in classical mechanics give
2
P v -E
2m
Quantum prescriptions; p —lv, E —>ih§ .
|

provides the non-relativistic equation of motion for field, v,

the Schrddinger Equation
2
gy vy i 28
2m ot

‘\P ‘2 represents the probability of finding the
particle of mass m at the position (x,y,z)
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Relativistic Equation of Motion for Spin 0 Particle

Relativistic energy-momentum relationship
2.2
—p°c’ =m’c* =p“p,—mc” =0

With four vector notation of quantum prescriptions;

h 1, 10 0 8 8
— —0, where 0 = , | 0y=——, O,=—, 0,=—, O,
Pu = 5 ‘o ox* [ "ot Tt ax ey P a ]

Relativistic equation of motion for field, y, the Klein-Gordon Equation

~h®0 07T - m°c’¥Y =0

9 2
2"d order 1 8 LP + V2 = ( j 7]
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Relativistic Equation of Motion (Dirac Equation) for
Spin 1/2 Particle

To avoid 2" order time derivative term, Dirac attempted to
factor relativistic energy-momentum relation

p“p,—m’c® =0

This works for the case with zero three momentum

( p0)2 —m?c? =(p°+me)(p°—me)=0
This results in two first order equations
p°+mc=0
n° —mc=0
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Dirac Equation Continued...

The previous prescription does not work for the case with non-0 three
momentum

p” P, -mc® = (,Bk Py _|_mc)(7/ P, —mc) =
B p.p, —me( B =) p,—mc?
The terms linear to momentum should disappear, so g = »*
To make it work, we must find coefficients y&to satisfy: P“P, =7 7' PP,

(0" (P =(p) =(p)
=) () +() (9] +(2) () () ()
+(7/071+7/170) Po Py +(7072 +7270) Po P +(7/°7/3 +7/37°) P, P, +Other Cross Terms

The coefficients like y°=1 and y'= y?= y3=7 do not work since they do
not eliminate the cross terms.
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Dirac Equation Continued...

It would work if these coefficients are matrices that satisfy the conditions

(PF =4 (4 () () -

v "+ " =0 when u#v

1 Or using

Minkowski
metric, g»

)=

Yyt =
29"

where g*" =

10 0 0]
0 -1 0 0
00 -1 0
0 0 0 -1

Using gamma matrices with the standard Bjorken and Drell convention

(1 0

0_10201/
" Zlo 1) |(0 0

0 0

|

0o

-1 0
0 -1

Where o' are Pauli spin matrices
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Dirac Equation Continued...

Using Pauli matrix as components in coefficient matrices whose smallest
size Is 4x4, the energy-momentum relation can now be factored

p“p,—m’c® = (*p, +mc)(y*p, —mec) =0
wl a solution 7" p,—mc=0

By applying quantum prescription of momentum P.. —1ho,,

Acting the 1-D solution on a wave -2k .
function, v, we obtain Dirac equation |h7/ 6;19”_ MCy = 0

[ ,//1\
: - W,
where Dirac spinor, y =
Vs
\W4 )
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Euler-Lagrange Equation

For a conservative force, the force can be expressed as

the gradient of the corresponding scalar potential, U

e

F=-vU

—

. d
Therefore the Newton'’s law can be written meY

Starting from Lagrangian L =T —-U = Emv

The 1-D Eu

d

( A
oL

dt
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1

-VU.
*-U

er-Lagrange fundamental equation of motion

oL dT
0 (, av,
oL _ U
0q;, OX

= mv
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Euler-Lagrange equation in QFT

Unlike particles, field occupies regions of space.
Therefore In field theory, the motion Is expressed
In terms of space and time.

Euler-Larange equation for relativistic fields
IS, therefore,

e’ oL _ oL
Note the four 0 (5 ﬂ¢i ) o

vector form
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Klein-Gordon Largangian for scalar (S=0) Field
For a single, scalar field ¢, the Lagrangian is

Ly

: 0L )7 oL M C ’
:a i _— _— .
Since 5(0,4,) # and 56 ( - j &

From the Euler-Largange equation, we obtain

W (me)
aﬂa¢+(hj¢ 0

This equation Is the Klein-Gordon equation describing a
free, scalar particle (spin 0) of mass m.
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Dirac Largangian for Spinor (S=1/2) Field

For a spinor field v, the Lagrangian
L=i(hc)yy o,y - (mcz)ww

0L oLr .
= =0 —=1(n “0 w —mc®
a(a W) and ™ i(7c)y W Cy

U

Since

From the Euler-Largange equation for s, we obtain

1y “0 ,p — (%)w =0

Dirac equation for a particle of spin % and mass m.
How’s Euler Lagrangian equation looks like for y?
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Proca Largangian for Vector (S=1) Field

Suppose we take the Lagrangian for a vector field A®

1 LAy 1 (mcY L
L:—E(aﬂA -0 Aﬂ)(aﬂa—avAﬂ)+8ﬂ( - j A'A
1 1 (mc)
=———— F"F_+ A’
167 H 87[( hj A

Where #v is the field strength tensor in relativistic notation, E and B in
Maxwell's equation form an anti-symmetic second-rank tensor

(0 -E, -E, -E)
E 0 -B B

= Hv — X : y
E, B, 0 -B
Pl o B By BX O )
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Proca Largangian for Vector (S=1) Field

Suppose we take the Lagrangian for a vector field A®

1 L 1 (mc L
L:—E(ﬁ“A -0"A")(0,A -0, ﬂ)+8ﬂ( , j A'A
1 1 (mec)’
————F"F, + A’
167 H 87[( h j A
_ oL 1 L 2
Since =—4—(8”A _d Aﬂ) nd or 1 (ij AY
0(0,A) 4n oA 4z\ 7

From the Euler-Largange equation for A%, we obtain

0, (0" A —"A")+ (mcj A =0, F* 1 (mcj A" =0
g h h
Proca equation for a particle of spin 1 and mass m.

For m=0, this equation is for an electromagnetic field. 5
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Lagrangians

o Lagrangians we discussed are concocted to
produce desired field equations
— £ derived (L=T-V) In classical mechanics

— £ taken as axiomatic in field theory

 The Lagrangian for a particular system Is not
unique
— Can always multiply by a constant
— Or add a divergence

— Since these do not affect field equations due to
cancellations
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Homework

 Prove that Fmn can represent Maxwell’s
equations, pg. 225 of Griffith’s book.

 Derive Eg. 11.17 in Griffith’s book
* Due is Wednesday, Mar. 7

Wednesday, Feb. 28, 2007

I

- 4

PHYS 5326, Spring 2007
Jae Yu

17



