PHYS 5326 — Lecture #12, 13, 14
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Dr. Jae Yu

Local Gauge Invariance

U(1) Gauge Invariance

SU(2) Gauge Invariance

Yang-Mills Lagrangian

Introduction of Massless Vector Gauge
Fields
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Klein-Gordon Largangian for scalar (S=0) Field
For a single, scalar field ¢, the Lagrangian is

Ly

: 0L )7 oL M C ’
:a i _— _— .
Since 5(0,4,) # and 56 ( - j &

From the Euler-Largange equation, we obtain

W (me)
aﬂa¢+(hj¢ 0

This equation Is the Klein-Gordon equation describing a
free, scalar particle (spin 0) of mass m.
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Dirac Largangian for Spinor (S=1/2) Field

For a spinor field v, the Lagrangian
L=i(hc)yy o,y - (mcz)ww

0L oLr .
= =0 —=1(n “0 w —mc®
a(a W) and ™ i(7c)y W Cy

U

Since

From the Euler-Largange equation for s, we obtain

1y “0 ,p — (%)w =0

Dirac equation for a particle of spin % and mass m.
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Proca Largangian for Vector (S=1) Field

Suppose we take the Lagrangian for a vector field A®

1 LAy 1 (mc L
L:—E(ﬁ“A -0"A")(0,A -0, ﬂ)+8ﬂ( , j A'A
1 1 (mec)’
———— F“F 4 A
167 H 87[( h j A
_ oL 1 L 2
Since =—4—(8”A _d Aﬂ) nd or 1 (ij AY
0(0,A) 4n oA 4z\ 7

From the Euler-Largange equation for A%, we obtain

0, (0" A —"A")+ (mcj A =0, F* 1 (mcj A" =0
h h
Proca equation for a particle of spin 1 and mass m.

For m=0, this equation is for an electromagnetic field. |
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Lagrangians

o Lagrangians we discussed are concocted to
produce desired field equations
— £ derived (L=T-V) In classical mechanics
— £ taken as axiomatic in field theory

 The Lagrangian for a particular system Is not unique
— Can always multiply by a constant
— Or add a divergence

— Since these do not affect field equations due to
cancellations
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Local Gauge Invariance - |
Dirac Lagrangian for free particle of spin %2 and mass ;

£=i(hc)yy o,y —(me?)yy
IS Invariant under a global phase transformation (global

gauge transformation) ¥ —e% since v —» ey
Why? 0 is a constant and is not subject to the derivative.

If the phase O varies as a function of space-time
coordinate, x*, is £ still invariant under the local

gauge transformation, ¥ — ¢y ?

No, because It adds an extra term from derivative of O.
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Local Gauge Invariance - ||
The derivative becomes

0,y =i(0,0)e""y +e"0 y
So the Lagrangian becomes

£ =i(hc)yy” [i(& 0)e" My + em(x)c’iﬂt//] ( ¢ yy

@)577”8 v - mC) (he)yr* (0,0 )w

Since the original £is £ =i(hc)yy*o v - ( yy
LS 1 = [,—(hC)WQ/ (8ﬂ6)w

Thus, this Lagrangian is not invariant under local gauge transformation!!
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Local Gauge Invariance - |l

Defining a local gauge phase, A

L ()= -0 (x )|:>e< )= -7 (x)

where g Is the charge of the particle involved, £ becomes

L = [+ (qu/”w )8ﬂ/1
Under the local gauge transformation:

W —> e—iq/l(x)/hc
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Local Gauge Invariance - [V

Requiring the complete Lagrangian be invariant under A(x)
local gauge transformation will require additional terms to the
free Dirac Lagrangian to cancel the extra term

£ =[i(he)wro,p - (me? )y ]@W@

Where A, Is a new vector gauge field that transforms
under local gauge transformation as follows:

A—> A, +0,4
Addition of this vector field to £ keeps £ invariant under
local gauge transformation, but...
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Local Gauge Invariance - V

The new vector field couples with the spinor through
the last term. In addition, the full Lagrangian must
include a “free” term for the gauge field. Thus, Proca
Largangian needs to be added.

: 5 Not-invariant
(7L pup mACj AA
167 o h

This Lagrangian Is not invariant under the local gauge
transformation, A, - A, + 0,4, because

A'A = (A +0,A)(A +0"4)
= A'A +(A 0“4+ AD,A)+(0,4)(0"2)

monday, Apr. 2 [N What ways can we make this £ invariant? 10

o




U(1) Local Gauge Invariance
The requirement of local gauge invariance forces the
introduction of a massless vector field into the free Dirac

Lagrangian=>» QED Lagrangian — Interaction between Dirac
fields (e* ) and Maxwell fields (photons)

(hc)wy/“@ —
Free £ for

gaugeﬁeld.Jr 1 F ”D) @ >)

Vector field for

A, is an electromagnetlc potential. gauge invariance

And A, — A, +0,4 Isagauge transformation of an

electromagnetlc patential,
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U(1) Local Gauge Invariance

The last two terms in the modified Dirac Lagrangian
form the Maxwell Lagrangian

__ -1
Maxwell _1672'
L FarR )
167 g

PR —%J“Aﬂ
_—(qeﬂ”w)Aﬂ

with the current density J = cqg (97 vy )
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U(1) Local Gauge Invariance
Local gauge invariance Is preserved If all the derivatives
In the Lagrangian are replaced by the covariant derivative

Minimal

D, =0 1 1 A Coupling
H H h C Rule

The gauge transformatlon preserves local invariance

e e

D —>a+
”W( hc

|q/y |q —iq/lC
= e [a +hC(Aﬂ+aﬂ/1)}W= e Dy

Since the gauge transformation, transforms the

9

covariant derivative . — 0+ — (A +0,4)
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U(1) Gauge Invariance

The global gauge transformation v — e“y is the same
as multiplication of y by a unitary 1x1 matrix

v — Uy where U'U =1 (Uzeie)

The group of all such matrices as U is U(1).

The symmetry involved in gauge transformation is
called the “U(1) gauge invariance”.
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Lagrangian for Two Spin ¥ fields

Free Lagrangian for two Dirac fields y, and v, with
masses m, and m, IS

L = |:I (hC)Q;ﬁ/ﬂaﬂWl - (mlC2 )‘;ﬁ”l]
HLi(he)y 70, —(Mmae® )y o,

Applying Euler-Lagrange equation to £, we obtain
Dirac equations for two fields

] m.C ] m.,C
W‘c’?ﬂwl—( hl jw1=0 17“8#%—( hz jw2=0

Monday, Apr. 2, 2007 @3  PHYS 5326, Spring 2007 15

Jae Yu




Lagrangian for Two Spin %2 fields

By defining a two-component column vector

| W Where i and s are four
g W, component Dirac spinors

The Lagrangian can be compactified as

L = i(hC)l;}/”(’?yw —cly My
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Lagrangian for Two Spin ¥ fields

If m,=m,, the Lagrangian looks the same as one particle
free Dirac Lagrangian

- - 2 -
L=i(hc)yy 0,y —mcyy
However, y now Is a two component column vector.

Global gauge transformation of wis ¥ —>Uy .
Where U is any 2x2 unitary matrix U"U =1

Sinceyr — U™, wy is invariant under the
transformation.
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SU(2) Gauge Invariance

Any 2x2 unitary matrix can be written, U =e™, where
H is a hermitian matrix (H*=H).

The matrix H can be generalized by expressing in
terms of four real numbers, a,, a,, a; and 0 as;

H=01+T1T-a

where 1 Is the 2x2 unit matrix and < Is the Paull matrices.
Thus, any unitary 2x2 matrix can be expressed as

U =E"6™)
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SU(2) Gauge Invariance

The global SU(2) gauge transformation takes the form
IT-a

y —>€

Since the determinant of the matrix €™ is 1, the
extended Dirac Lagrangian for two spin % fields Is
invariant under SU(2) global transformations.

Yang and Mills took this global SU(2) invariance to local
Invariance.
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SU(2) Local Gauge Invariance

The local SU(2) gauge transformation by taking the
parameter a dependent on the position x, and defining

hC Where g is a coupling
=——2a2 ( X) constant analogous
q to electric charge

s  —> Sy where § = e—qu./m(%c

£, 1S not invariant under this transformation, since the
derivative becomes 0, — S0, + (a 4O )z,y
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SU(2) Local Gauge Invariance

Local gauge invariance can be preserved by replacing
the derivatives with covariant derivative

_8 +zi’t A
hc

where the vector gauge field follows the transformation
rule Dy —> S ((DﬂW)
With a bit more involved manipulation, the resulting £

that Is local gauge invariant |s
L= I(hc)l,y}/”@ w —mclyy
=[ (hC)W“5 y —me ww]—(QW“TW)-Aﬂ

o ) ISRV

ay, Mpr.




SU(2) Local Gauge Invariance

Since the intermediate £ introduced three new vector
fields AH=(A*, A,*, Ag), and the £ requires free £ for

each of these vector fields

1w I 1w |-
[’jl ——E F'u F,UV]-_E F'u F,uv2 —E F'u F _—EF; .Fuv?a

Set the Proca mass terms in £, 8—(%) A"-A =0 10

preserve local gauge invariance, ?naking the vector
bosons massless.

This time F* = (5" A" — 5" A*) also does not make
the £ local gauge invariant due to cross terms.
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SU(2) Local Gauge Invariance
By redefining
F" =0"A"-0"A" —Q(A” xA")

hC
The complete Yang-Mills Lagrangian £ becomes
1 —
_ H T W, _ H .
L= (hC)W 0, —mc W] T (awr Ty )-A,

This £

oIS Invariant under SU(2) local gauge transformation.

edescribes two equal mass Dirac fields interacting with
three massless vector gauge fields.
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Yang-Mills Lagrangian
The Dirac fields generates three currents
J=c(awr“ty)

These act as the sources for the gauge fields whose
lagrangian Is

1 —
Lgauge = 1672' F" .Flw _(quﬂT W)Alu

The complication in SU(2) gauge symmetry stems
from the fact that U(2) group Is non-Abelian (non-
commutative).
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Yang-Mill

Epilogue

S gauge symmetry did not work due to

the fact that no-two Dirac particles are equal

Mass and

the requirement of massless iso-triplet

vector pa

This was

ticle.

solved by the introduction of Higgs

mechanism to give mass to the vector fields,
thereby causing EW symmetry breaking.

Monday, Apr. 2, 2007

PHYS 5326, Spring 2007 25
Jae Yu

fiu = '..
& T ,--'.'I"




Introducing Mass Terms

Consider a free Lagrangian for a scalar field, ¢:

L= 3 (08)(0%0) e

No apparent mass terms unless we expand the second
term and compare this £ with the Klein-Gordon £:

L= l(aﬂ¢)(aﬂ¢)+1— (ap) + %((w)“ —%(a¢)6 T

2
1 1 °
%7(5#)(5%)‘5(%) Z

where m=+2af/c
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Introducing Mass Terms in Potential

Consider a Lagrangian for a scalar field, ¢, in a

potential:

1 1 2 12 1 2 14
= 5(0,0)(2%0)+ S w9 -3 2%

Mass term (¢2 term) has the wrong sign unless mass is
Imaginary. How do we interpret this £?

In Feynman calculus, the fields are the fluctuation
(perturbation) from the ground state (vacuum).

Expressing £=T-U, the 5 _ _£ﬂ2¢2 +£/12¢4
potential energy U is 2 4
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Introducing Mass Terms In Interactions
The field that minimizesUis @ = tu/l A

To shift the ground state to occur at 0, we introduce a
newvariable,n: n =g+ ul i

Replacing field, ¢, with the new field, n, the £ becomes

c=Lomen) G Cam)e (w1 2)

Mass
term

3point
ViX

4point
VIX
Comparing this modified £ with £, the mass of the

vector field is m=~2un/c
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Spontaneous Symmetry Breaking
The original lagrangian, £,

1 1 2 12 1 2 14
L =E(8ﬂ¢)(5“¢)+5y ¢ - A%

IS even and thus invariant under ¢ = —¢.

However, the new £
L= %(@ﬂn)(ﬁﬂn)—yznz + udn’ —%/12774 Jr%(,u2 /ﬂu)2

has an odd term that causes this symmetry to break

since any one of the ground states (vacuum) does not
share the same symmetry as L.
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Potential and Symmetry Breaking

Not symmetric
about this axis

1 1

A WU {p)=——u'p*+=1'¢"
: 2 4
Symmetric
. about this axis

— pLE/ A + /N

L ‘ —

- P
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Spontaneous Symmetry Breaking

While the collection of ground states does preserve the
symmetry in £, the Feynman formalism allows to work
with only one of the ground states. =» Causes the
symmetry to break.

This Is called “spontaneous” symmetry breaking,
because symmetry breaking is not externally caused.

The true symmetry of the system is hidden by an
arbitrary choice of a particular ground state. ThisIs a
case of discrete symmetry w/ 2 ground states.
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Spontaneous Breaking of a Continuous Symmetry
A lagrangian, £, for two fields, ¢, and ¢, can be written

£=5(0,0)(2%0,)+ 5 (0,0:)(0"%:)
b w97+ 92) - 727 (04 40
s even and thus invariant under ¢, ¢, 2 —¢, —¢, .

The potential energy term becomes
1 1
U= =28 +97)+ A7 (4 +47)

" w/ the minima on the circle:

ircle of minima 2 2 . 2 2
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Spontaneous Breaking of a Continuous Symmetry

To apply Feynman calculus,
we need to expand about a
particular ground state (the

“vacuum”). Picking

¢Lﬁn ::u/ ﬂ“ and @,nin :O
SN——

And Introducing two new fielas, ny ana ¢, wnicn
are fluctuations about the vacuum:

n=¢—-—ulA and & =9,
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Spontaneous Breaking of a Continuous Symmetry

Ly Of the field n w/ L4 Of the
3{)0” the mass m, =v2uh/c massless field &
VIX
4point
VX
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Spontaneous Breaking of Continuous
Global Symmetry
One of the fields Is automatically massless.

Goldstone’s theorem says that breaking of continuous
global symmetry Is always accompanied by one or
more massless scalar (spin=0) bosons, called
Goldstone Bosons.

This again poses a problem because the effort to
introduce mass to weak gauge fields introduces a
massless scalar boson which has not been observed.

This problem can be addressed If spontaneous SB Is
applied to the case of local gauge invariance.

L\:‘:"EI-. = .::.-:"I-:..'
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Homework

 Prove that the new Dirac Lagrangian with an
addition of a vector field A ,, as shown on page
9, Is invariant under local gauge transformation.

 Describe the reason why the local gauge
Invariance forces the vector field to be massless

* Due Is Wednesday, Apr. 11
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