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PHYS 5326 – Lecture #12, 13, 14
Monday, Apr. 2, 2007

Dr. Jae Yu

1. Local Gauge Invariance
2. U(1) Gauge Invariance
3. SU(2) Gauge Invariance
4. Yang-Mills Lagrangian
5. Introduction of Massless Vector Gauge 

Fields 



Monday, Apr. 2, 2007 PHYS 5326, Spring 2007
Jae Yu

2

Klein-Gordon Largangian for scalar (S=0) Field
For a single, scalar field φ, the Lagrangian is

( )( )
2

21 1
2 2

mcµ
µφ φ φ⎛ ⎞= ∂ ∂ − ⎜ ⎟

⎝ ⎠
L

2

0m cµ
µ φ φ⎛ ⎞∂ ∂ + =⎜ ⎟

⎝ ⎠

From the Euler-Largange equation, we obtain 

Since ( ) i
i

µ

µ

φ
φ

∂
= ∂

∂ ∂
L

and 
2

i
i

m c φ
φ

∂ ⎛ ⎞= − ⎜ ⎟∂ ⎝ ⎠
L

This equation is the Klein-Gordon equation describing a 
free, scalar particle (spin 0) of mass m.
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Dirac Largangian for Spinor (S=1/2) Field
For a spinor field ψ, the Lagrangian

( ) ( )2i c mcµ
µψ γ ψ ψψ= ∂ −L

0m ci µ
µγ ψ ψ⎛ ⎞∂ − =⎜ ⎟

⎝ ⎠

From the Euler-Largange equation for ⎯ψ, we obtain 

Since ( )
0

µψ
∂

=
∂ ∂

L
and ( ) 2i c m cµ

µγ ψ ψ
ψ

∂
= ∂ −

∂
L

Dirac equation for a particle of spin ½ and mass m.
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Proca Largangian for Vector (S=1) Field
Suppose we take the Lagrangian for a vector field Aµ

( )( )
21 1

16 8
mcA A A A A Aµ ν ν µ ν

µ ν ν µ νπ π
⎛ ⎞= − ∂ − ∂ ∂ − ∂ + ⎜ ⎟
⎝ ⎠

L

( )
2mcA A Aµ ν ν µ ν

µ
⎛ ⎞∂ ∂ − ∂ + ⎜ ⎟
⎝ ⎠

From the Euler-Largange equation for Aµ, we obtain 

Since ( ) ( )1
4

A A
A

µ ν ν µ

µ ν π
∂

= − ∂ − ∂
∂ ∂

L
and 

21
4

mc A
A

ν

ν π
∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

L

For m=0, this equation is for an electromagnetic field.
Proca equation for a particle of spin 1 and mass m.

21 1
16 8

mcF F A Aµν ν
µν νπ π

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

2

0mcF Aµν ν
µ

⎛ ⎞= ∂ + =⎜ ⎟
⎝ ⎠
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Lagrangians
• Lagrangians we discussed are concocted to 

produce desired field equations
– L derived (L=T-V) in classical mechanics
– L taken as axiomatic in field theory

• The Lagrangian for a particular system is not unique
– Can always multiply by a constant
– Or add a divergence
– Since these do not affect field equations due to 

cancellations
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Local Gauge Invariance - I
Dirac Lagrangian for free particle of spin ½ and mass m;

( ) ( )2i c mcµ
µψγ ψ ψψ= ∂ −L

is invariant under a global phase transformation (global 
gauge transformation)                     since                  ψ ψ→ ie θψ ψ−→

If the phase θ varies as a function of space-time 
coordinate, xµ, is L still invariant under the local 
gauge transformation,                    ?( )i xe θψ ψ→

No, because it adds an extra term from derivative of θ.

ie θ

Why? θ is a constant and is not subject to the derivative.
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Local Gauge Invariance - II
The derivative becomes 

( ) ( )2i c mcµ
µψ γ ψ ψψ= ∂ −L

µψ∂ =
So the Lagrangian becomes 

( ) ( )2                                           i c m cµψ γ ψψ= −'L

Since the original L is 
L’ is ='L L

Thus, this Lagrangian is not invariant under local gauge transformation!!

( ) ( ) ( ) ( )2i c m c cµ µ
µ µψ γ ψ ψψ ψ γ θ ψ= ∂ − − ∂

( )i xe θ
µψ+ ∂( ) ( )i xi e θ

µθ ψ∂

( ) ( ) ( )i x i xi e eθ θ
µ µθ ψ ψ⎡ ⎤∂ + ∂⎣ ⎦

( ) ( )c µ
µψ γ θ ψ− ∂
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Local Gauge Invariance - III
Defining a local gauge phase, λ(x), as 

where q is the charge of the particle involved, L becomes  

Under the local gauge transformation:

( ) ( )cx x
q

λ θ≡ −

='L L

( ) /iq x ce λψ ψ−→

( )q µ
µψ γ ψ λ+ ∂

( ) ( )qx x
c

θ λ= −
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Local Gauge Invariance - IV
Requiring the complete Lagrangian be invariant under λ(x) 
local gauge transformation will require additional terms to the 
free Dirac Lagrangian to cancel the extra term

Where Aµ is a new vector gauge field that transforms 
under local gauge transformation as follows:

A µ

( ) ( ) ( )2i c mc q Aµ µ
µ µψ γ ψ ψψ ψ γ ψ⎡ ⎤= ∂ − −⎣ ⎦L

Addition of this vector field to L keeps L invariant under 
local gauge transformation, but…

A µ µ λ→ + ∂
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Invariant

This Lagrangian is not invariant under the local gauge 
transformation,                              , because  

Local Gauge Invariance - V
The new vector field couples with the spinor through 
the last term.   In addition, the full Lagrangian must 
include a “free” term for the gauge field.  Thus, Proca
Largangian needs to be added.

A Aµ µ µ λ→ + ∂

21 1
16 8

Am cF F A Aµν ν
µν νπ π

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

L

( )( )A A A Aν ν µ
ν µ νλ λ⇒ + ∂ + ∂

( ) ( )( )A A A Aν ν µ µ
ν ν µ µλ λ λ λ= + ∂ + ∂ + ∂ ∂

Not-invariant

In what ways can we make this L invariant?
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And                             is a gauge transformation of an 
electromagnetic potential. 

U(1) Local Gauge Invariance 
The requirement of local gauge invariance forces the 
introduction of a massless vector field into the free Dirac
Lagrangian QED Lagrangian – Interaction between Dirac
fields (e+- ) and Maxwell fields (photons) 

( ) ( )

( )

2

1   
16

i c mc

F F q A

µ
µ

µν µ
µν µ

ψ γ ψ ψψ

ψ γ ψ
π

⎡ ⎤= ∂ −⎣ ⎦
−⎡ ⎤+ −⎢ ⎥⎣ ⎦

L

Aµ is an electromagnetic potential. 
A Aµ µ µλ→ + ∂

Free L for 
gauge field.

Vector field for 
gauge invariance
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U(1) Local Gauge Invariance 
The last two terms in the modified Dirac Lagrangian 
form the Maxwell Lagrangian 

=M axw ellL

( )J cq µψ γ ψ=with the current density

( )1
16

F F q Aµν µ
µν µψ γ ψ

π
−⎡ ⎤= −⎢ ⎥⎣ ⎦

1 1 
16

F F J A
c

µν µ
µν µπ

−⎡ ⎤ −⎢ ⎥⎣ ⎦
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U(1) Local Gauge Invariance 
Local gauge invariance is preserved if all the derivatives 
in the Lagrangian are replaced by the covariant derivative

µ µ≡ ∂D

Since the gauge transformation, transforms the  
covariant derivative µD

µψD

The gauge transformation preserves local invariance

Minimal 
Coupling 

Rule

iq
ciq A e

c

λ

µ µ ψ
−⎛ ⎞→ ∂ +⎜ ⎟

⎝ ⎠

( )
iq

c iqe A
c

λ

µ µ µ λ ψ
− ⎡ ⎤= ∂ + + ∂ =⎢ ⎥⎣ ⎦

iq
ce

λ

µψ
−

D

µ→ ∂ ( )qi A
c µ µ λ+ + ∂

Aµ+
q

i
c
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U(1) Gauge Invariance 
The global gauge transformation                   is the same 
as multiplication of ψ by a unitary 1x1 matrix

ie θψ ψ→

Uψ ψ→ where 1U U+ =

The group of all such matrices as U is U(1).

The symmetry involved in gauge transformation is 
called the “U(1) gauge invariance”. 

( )iU e θ=
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Lagrangian for Two Spin ½ fields
Free Lagrangian for two Dirac fields ψ1 and ψ2 with 
masses m1 and m2 is

Applying Euler-Lagrange equation to L, we obtain 
Dirac equations for two fields

( ) ( )2
1 11 1 1i c m cµ

µψ γ ψ ψ ψ⎡ ⎤= ∂ −⎣ ⎦L

1
1 1 0m ci µ

µγ ψ ψ⎛ ⎞∂ − =⎜ ⎟
⎝ ⎠

2
2 2 0m ci µ

µγ ψ ψ⎛ ⎞∂ − =⎜ ⎟
⎝ ⎠

( ) ( )2
2 22 2 2i c m cµ

µψ γ ψ ψ ψ⎡ ⎤+ ∂ −⎣ ⎦
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Where     and       are four 
component Dirac spinors

Lagrangian for Two Spin ½ fields
By defining a two-component column vector

The Lagrangian can be compactified as

( ) 2i c c Mµ
µψ γ ψ ψ ψ= ∂ −L

1

2

      0
0       
m

M
m

⎛ ⎞
=⎜ ⎟

⎝ ⎠

1

2

ψ
ψ

ψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

With the mass matrix

1ψ 2ψ
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Lagrangian for Two Spin ½ fields
If m1=m2, the Lagrangian looks the same as one particle 
free Dirac Lagrangian

However, ψ now is a two component column vector.
Global gauge transformation of ψ is                   .Uψ ψ→
Where U is any 2x2 unitary matrix 1U U+ =
Since                   ,           is invariant under the 
transformation.

Uψ ψ +→ ψψ

( ) 2i c mcµ
µψ γ ψ ψψ= ∂ −L
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SU(2) Gauge Invariance

The matrix H can be generalized by expressing in 
terms of four real numbers, a1, a2, a3 and θ as;

H θ= + ⋅1 aτ
where 1 is the 2x2 unit matrix and τ is the Pauli matrices.

i iU e eθ ⋅= 1 aτ
Thus, any unitary 2x2 matrix can be expressed as

Any 2x2 unitary matrix can be written,                , where 
H is a hermitian matrix (H+=H). 

iHU e=

U(1) gauge SU(2) gauge
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SU(2) Gauge Invariance
The global SU(2) gauge transformation takes the form

ieψ ψ⋅→ aτ

Since the determinant of the matrix          is 1, the 
extended Dirac Lagrangian for two spin ½ fields is 
invariant under SU(2) global transformations.

ie ⋅aτ

Yang and Mills took this global SU(2) invariance to local 
invariance.
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SU(2) Local Gauge Invariance
The local SU(2) gauge transformation by taking the 
parameter a dependent on the position xµ and defining

( )c x
q

λ ≡ − a
Where q is a coupling 
constant analogous 
to electric charge

is                        where Sψ ψ→
( )iq x

cS e
τ λ− ⋅

≡

L is not invariant under this transformation, since the 
derivative becomes ( )S Sµ µ µψ ψ ψ∂ → ∂ + ∂
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SU(2) Local Gauge Invariance
Local gauge invariance can be preserved by replacing 
the derivatives with covariant derivative 

µ µ≡ ∂ + ⋅ µA
q

D i
c
τ

where the vector gauge field follows the transformation 
rule ( )Sµ µψ ψ→D D
With a bit more involved manipulation, the resulting L
that is local gauge invariant is 

( ) 2i c mcµ
µψ γ ψ ψψ= −L D

( ) ( )2i c mc qµ µ
µ µψ γ ψ ψψ ψ γ ψ⎡ ⎤= ∂ − − ⋅⎣ ⎦ Aτ
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This time                                       also does not make 
the L local gauge invariant due to cross terms.

SU(2) Local Gauge Invariance
Since the intermediate L introduced three new vector 
fields Aµ=(A1

µ, A2
µ, A3

µ), and the L requires free L for 
each of these vector fields

1 1 2 2 3 3
1 1 1

16 16 16
F F F F F Fµν µν µν

µν µν µνπ π π
= − − − =AL

Set the Proca mass terms in L,                                to 
preserve local gauge invariance, making the vector 
bosons massless.

21 0
8

mc
π

⎛ ⎞ ⋅ =⎜ ⎟
⎝ ⎠

ν
νA A

( )F A Aµν µ ν ν µ= ∂ − ∂

1
16π

− ⋅µν
3 µν3F F
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SU(2) Local Gauge Invariance
By redefining 

( )2q
c

µ ν≡ ∂ −∂ − ×µν ν µ µ νF A A A A

The complete Yang-Mills Lagrangian L becomes

( ) ( )2 1
16

i c mc qµ µ
µ µψγ ψ ψψ ψγ ψ

π
⎡ ⎤= ∂ − − ⋅ − ⋅⎣ ⎦

µν
µνF F AL τ

This L
•is invariant under SU(2) local gauge transformation.
•describes two equal mass Dirac fields interacting with 
three massless vector gauge fields.
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Yang-Mills Lagrangian
The Dirac fields generates three currents

These act as the sources for the gauge fields whose 
lagrangian is

( )1
16

q µ
µψγ ψ

π
= − ⋅ − ⋅µν

µνF F AgaugeL τ

The complication in SU(2) gauge symmetry stems 
from the fact that U(2) group is non-Abelian (non-
commutative).

( )c q µψγ ψ≡J τ
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Epilogue
Yang-Mills gauge symmetry did not work due to 
the fact that no-two Dirac particles are equal 
mass and the requirement of massless iso-triplet 
vector particle.

This was solved by the introduction of Higgs 
mechanism to give mass to the vector fields, 
thereby causing EW symmetry breaking.
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Introducing Mass Terms
Consider a free Lagrangian for a scalar field, φ:

( )( ) ( )1
2

e αφµ
µφ φ −= ∂ ∂ +L

No apparent mass terms unless we expand the second 
term and compare this L with the Klein-Gordon L:

2 /m cα=where

( )( ) ( ) ( ) ( )2 4 61 1 11 ....
2 2 6

µ
µφ φ α φ α φ α φ= ∂ ∂ + − + − +L

( )( )
2

21 1
2 2

mcµ
µφ φ φ⎛ ⎞= ∂ ∂ − ⎜ ⎟

⎝ ⎠
KGL
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Introducing Mass Terms in Potential
Consider a Lagrangian for a scalar field, φ, in a 
potential:

( )( ) 2 2 2 41 1 1
2 2 4

µ
µφ φ µ φ λ φ= ∂ ∂ + −L

Mass term (φ2 term) has the wrong sign unless mass is 
imaginary.  How do we interpret this L?

Expressing L =T-U, the 
potential energy U is

In Feynman calculus, the fields are the fluctuation 
(perturbation) from the ground state (vacuum).

2 2 2 41 1
2 4

U µ φ λ φ= − +
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Introducing Mass Terms in Interactions
The field that minimizes U is /φ µ λ= ±

Replacing field, φ, with the new field, η, the L becomes

To shift the ground state to occur at 0, we introduce a 
new variable, η: /η φ µ λ≡ ±

( )( ) ( )22 2 3 2 4 21 1 1 /
2 4 4

µ
µη η µ η µλη λ η µ λ= ∂ ∂ − ± − +L

Mass 
term

3point 
vtx

4point 
vtx

Comparing this modified L with LKG, the mass of the 
vector field is 2 /m cµ=
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Spontaneous Symmetry Breaking
The original lagrangian, L,

is even and thus invariant under φ −φ.

( )( ) ( )22 2 3 2 4 21 1 1 /
2 4 4

µ
µη η µ η µλη λ η µ λ= ∂ ∂ − ± − +L

( )( ) 2 2 2 41 1 1
2 2 4

µ
µφ φ µ φ λ φ= ∂ ∂ + −L

However, the new L

has an odd term that causes this symmetry to break 
since any one of the ground states (vacuum) does not 
share the same symmetry as L. 
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Potential and Symmetry Breaking

4222

4
1

2
1 φλφµ +−=

Symmetric 
about this axis

Not symmetric 
about this axis
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Spontaneous Symmetry Breaking
While the collection of ground states does preserve the 
symmetry in L, the Feynman formalism allows to work 
with only one of the ground states.  Causes the 
symmetry to break.

This is called “spontaneous” symmetry breaking, 
because symmetry breaking is not externally caused.

The true symmetry of the system is hidden by an 
arbitrary choice of a particular ground state.  This is a 
case of discrete symmetry w/ 2 ground states.
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Spontaneous Breaking of a Continuous Symmetry
A lagrangian, L, for two fields, φ1 and φ2 can be written

is even and thus invariant under φ1, φ2 −φ1, −φ2 .

( )( ) ( )( )1 1 2 2
1 1
2 2

µ µ
µ µφ φ φ φ= ∂ ∂ + ∂ ∂L

The potential energy term becomes

( ) ( )2 2 2 2 4 4
1 2 1 2

1 1 
2 4

U µ φ φ λ φ φ= − + + +

w/ the minima on the circle:
2 2 2 2

1,min 2,min /φ φ µ λ+ =

( ) ( )2 2 2 2 4 4
1 2 1 2

1 1   
2 4

µ φ φ λ φ φ+ + − +
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Spontaneous Breaking of a Continuous Symmetry
To apply Feynman calculus, 
we need to expand about a 
particular ground state (the 
“vacuum”).  Picking 

And introducing two new fields, η and ξ, which 
are fluctuations about the vacuum:

1,min /φ µ λ= 2,min 0φ =and

1 /η φ µ λ≡ − 2ξ φ≡and
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Spontaneous Breaking of a Continuous Symmetry
The new L becomes

( )( ) ( )( )2 21 1
2 2

µ µ
µ µη η µ η ξ ξ⎡ ⎤ ⎡ ⎤= ∂ ∂ − + ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

L

Lfree of the 
massless field ξ3point 

vtx

4point 
vtx

LKG of the field η w/ 
the mass cm /2µη =

( ) ( ) ( )
2 23 2 4 4 2 2 212 /

4 4
λµλ η ηξ η ξ η ξ µ λ

⎡ ⎤
+ + − + + +⎢ ⎥

⎣ ⎦
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Spontaneous Breaking of Continuous 
Global Symmetry 

One of the fields is automatically massless.
Goldstone’s theorem says that breaking of continuous 
global symmetry is always accompanied by one or 
more massless scalar (spin=0) bosons, called 
Goldstone Bosons.  
This again poses a problem because the effort to 
introduce mass to weak gauge fields introduces a 
massless scalar boson which has not been observed.
This problem can be addressed if spontaneous SB is 
applied to the case of local gauge invariance.
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Homework
• Prove that the new Dirac Lagrangian with an 

addition of a vector field Aµ, as shown on page 
9, is invariant under local gauge transformation.

• Describe the reason why the local gauge 
invariance forces the vector field to be massless

• Due is Wednesday, Apr. 11


