PHYS 5326 – Lecture #20

Wednesday, Apr. 25, 2007 Dr. Jae Yu

- •Higgs Search Strategy
- •Higgs Search Channels
- •Backgrounds to Higgs Searches
- •Requirement on Experiments for Higgs Searches

Hadron Collider SM Higgs Production $\boldsymbol{\sigma}$

Tevatron Run I Results

• Run I limits are not very stringent

Channel	DØ (95% CL)	CDF(95% CL)	Theory
$WH \rightarrow \ell \nu bb$	<28 pb	<27 pb	0.07
ZH →vvbb		<8 pb	0.10
$ZH \rightarrow \ell \ell bb$		<7.5 pb	0.11

CDF

Tevatron Run II Higgs Physics

σ (pb) for M _H =100 GeV			
$gg \rightarrow H$	1.17		
$qq,gg \rightarrow WH$	0.31		
$qq,gg \rightarrow ZH$	0.17		
$qq,gg \rightarrow H+2jets$	0.12		
All others	<0.02		
Backgrounds			
WZ+ZZ	4.4		
Wbb+Zbb	14		
tt	7.5		
tb+tq_tbq	3.4		
QCD	O(10 ⁶) dijet O(10 ⁵) 4jet		
$W \rightarrow ev$	2800		

$H(h) \rightarrow b \overline{b}$

- Two b-quark jets in the final state
- Look for signature of b-quark jets
 - b-quark jets contain B mesons
 - B-mesons have finite lifetime and decay in flight
- Final state of interest
 - A displaced vertex from the primary vertex
 - Existence of secondary leptons from b-quark semileptonic decay

How does a displaced vertex look?

H (h) →WW

- W's decay immediately
- Look for signature of W's
 - W branching ratios
 - ~11% to leptonic final state (l+v) for each lepton
 - ~69% to quark and anti-quark final states
- Final states of interest
 - One high P_T lepton (e or μ) + missing E_T + two jets
 - Two opposite charge high P_T leptons (ee, $\mu\mu$, or e μ) + Missing E_T
 - Four jets

H (h) $\rightarrow \tau \tau$

- τ's decay almost immediately
- Look for signature of $\tau 's$
 - $-\tau$ branching ratios
 - ~17% to leptonic final state ($e, \mu + \nu + \nu$) for each lepton
 - ~68% to hadrons (one or three charged hadrons)
- Final states of interest
 - One medium P_T lepton (e or μ) + missing E_T + one narrow jet
 - Two opposite charge medium P_{T} leptons (ee, $\mu\mu$, or e\mu) + Missing E_{T}
 - Two narrow jets

For HW or HZ

- Cross section is about 10% of $gg \rightarrow H$
- Both H and W/Z decay immediately
- Look for signature of vector bosons with H decay final states
- W or Z final state characteristics
 - Decay to Leptons or quark jets
- Final states of interest for HW
 - Higgs decay + One high P_T lepton
 - Higgs decay + two light quark jets

HZ Final States

- Z decay branching ratio
 - ~3% for each charged lepton pairs
 - ~20% two neutrino final states
 - ~70% quark, anti-quark final states
 - ~15% b \overline{b} final states
- Final states of interest for HZ
 - Two high P_T lepton + Higgs decay channels
 - Large Missing E_T + Higgs decay channels
 - Four b-jet final states

Summary of Final States of Interest

- W decay:
 - $W \rightarrow qq$ channel very hard
 - depends on dijet mass resolution
 - $W \rightarrow e \nu, \mu \nu, \tau \nu$
 - Isolated lepton plus missing E_T
- Z decay
 - $Z \rightarrow qq$ same as W difficult
 - Z \rightarrow ee, $\mu\mu$ (probably not $\tau\tau$)
 - Isolated lepton plus mass resolution
- Higgs decay:
 - Look for b \overline{b} pairs
 - Impact parameter resolution
 - Silicon vertexing
 - Di-jet mass resolution

Wednesday, Apr. 25, 2007

b-tagging is a MUST

Higgs Backgrounds To WH

- WH \rightarrow Iv b b backgrounds
 - Wb \overline{b}
 - Where the W decays leptonically
 - Cross section is 2.3nb* $\alpha_s^{2*}m_b$ -threshold factor for each lepton
 - WZ:
 - + W decays leptonically while Z decays to b $\ \overline{b}$
 - Cross section is 2.3nb* α_{EW2} *b final state branching ratio
 - t t: Each t decays to W and b pairs. How would this become a background?
 - single t: How?
- WH \rightarrow qq b \overline{b} overwhelmed by QCD background since it has four jets in the final state

Higgs Backgrounds to ZH

- $ZH \rightarrow IIb \bar{b}$ final state for signature
 - Zb b
 - Z decays to two leptons
 - Cross section is 0.2nb* $\alpha_s^{2*}m_b$ -threshold factor for each lepton
 - ZZ
 - One Z decays to two leptons while the other decays to b $\ \overline{b}$
 - Cross section is 2*0.2nb* α_{EW} *b branching ratio
 - t \overline{t} : How does this channel become background to ZH?

Higgs Backgrounds to ZH

- $ZH \rightarrow vvb \overline{b}$
 - QCD:How would this become background to this process?
 - Zb \overline{b} : Z decays to neutrinos
 - ZZ: One Z decays to neutrinos while the other decays to b \overline{b}
 - t \overline{t} : How would this process become background?

Higgs Backgrounds to gg \rightarrow H \rightarrow WW*

- WW final state is a generic, inherent and irreducible background
- 2*l*+MET final state
 - ZZ: One Z decays to two leptons while the other to two neutrinos
 - Drell-Yan (q $\overline{q} \rightarrow \gamma^* \rightarrow \ell \ell$)
 - t \overline{t} : How this could be the background to this process?
 - WZ: Z decays to two leptons, while W decays to $\ell\!\!\!\!\!\!+\!\nu$ where ℓ is lost
 - $\tau\tau$: Both τ 's decay leptonically

Higgs Backgrounds to gg \rightarrow H \rightarrow WW*

- 1*L*+MET+2jets final state
 - WZ: W decays to $\ell + \nu$ and Z decays to two jets
 - Z: One Z decays to two leptons (of which one is lost) while the other to two jets
 - t \overline{t} : How is this become a background to this process?
 - tW:How could this become a background to this process?

Summary of Higgs Physics Backgrounds

- The best discovery channel is with HW and HZ
- The background for $m_H < 130 \text{ GeV}$ are
 - WH \rightarrow Iv b b backgrounds Wb b, WZ, t t, single t
 - WH \rightarrow qq b \overline{b} overwhelmed by QCD background since it has four jets in the final state
 - $-ZH \rightarrow IIb \overline{b}$ backgrounds Zb \overline{b} , ZZ, t \overline{t}
 - $ZH \rightarrow vv b \overline{b}$ backgrounds QCD, Zb \overline{b} , ZZ, t \overline{t}
- The background for $m_H > 130$ GeV are
 - gg \rightarrow H \rightarrow WW* backgrounds Drell-Yan, WW, WZ, ZZ, tt, tW, $\tau\tau$

Tevatron Higgs Production $\boldsymbol{\sigma}$

19

TeVatron Run II Higgs S/N

- $H \rightarrow b \overline{b}$
 - S/N drops as M_H increases
 - Run out of events....
 - Ultimately limits the experimental reach
- $H \rightarrow WW/ZZ$ (virtual)
 - Depends on di-jet mass resolution

